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Chapter �

Original sin

Anyone who considers arithmetical methods
of producing random digits

is� of course� in a state of sin�
� John von Neumann� ����

������� We will get involved into right this� computer algorithms for
producing random numbers� Consider the C function declarations below�

double sin� double x ��

int rand���

The sin�� function is well known� and implementations of rand�� are what
we are looking for� This might be not much of a problem 	 both sin��

and rand�� should approximate well�de�ned mathematical objects� the Si�
nus function and a sequence of independent random variables uniformly
distributed on f�� � � � �RAND MAX � �g�� The function sin�� is easily
compared to the mathematical object it should approximate� an implemen�
tation which returns ���� for sin����� will certainly not be considered a
well suited one� But what about an implementation of rand�� which returns
�	��
� ����
�	���� �
�
����
� ���
���
	� on four successive calls�

�����
� Ripley describes the common attitude towards this problem
in ���� p�
� as follows� �The �rst thing needed for a stochastic simulation is

�RAND MAX is a prede�ned integer depending on which system you are using�
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a source of randomness� This is often taken for granted but is of fundamen�
tal importance�� In ���� p����� he continues� �Many users of simulation are
content to remain ignorant of how such numbers were produced� merely call�
ing standard functions to produce them� Such attitudes are dangerous� for
random numbers are the foundations of our simulation edi�ce� and problems
at higher levels are frequently traced back to faulty foundations��

������� Ever since my �rst acquaintance with the subject of random
number generation� I failed to cope with the apparent paradox of employing
deterministic algorithms to produce random numbers� By the time� uneasy�
ness turned from suspicion to the assertion that the whole concept per se
did not make much sense� Finally� I was able to prove�

In general� it is not possible to rate any �nite sequence of num�
bers more �random� than any other�

With this� an implementation of rand�� which returns � all over again
cannot be considered worse than your favorite �random� number generator�
But somehow intuition� as well as a whole world full of applications seem
to oppose this attitude��

������� It is common belief today that computers are capable of simu�
lating almost everything 	 even quantities that are indeterminate and ran�
dom� The crucial point in simulating randomness with a computer is that
the latter is what the former is de�nitly not� deterministic� But� some�
how� this concept obviously passed the test of application in practice� The
various �elds� ranging from physics to operations research and civil engineer�
ing� in which stochastic simulation is employed whitness the attraction of
this method� almost every general�purpose programming language and even
o��the�shelf spreadsheet programs like Microsoft Excel include a �random�
number generator�
Here� we cannot treat the numerous techniques of stochastic simulation
�among the many books on this subject� we refer the reader to �
�� ��
��
����� or ������ just let us observe that a method which proves to work well in
so many applications can hardly be completely unfounded�

�You are likely to prefer your favorite algorithm for rand�� to a ��repeating rand���
�There are exceptions like Zaremba ����� who considers the concept of simulating ran�

domness on a computer as 	spurious
� But� somehow� this idea failed to become popular�
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������� The problem we face here is this� users expect mathematicians
to propose deterministic algorithms 	 programs 	 �well suited� for generating
�random� numbers� They have reason to do so� since mathematicians started
using such algorithms in the �rst place�

To be precise� the whole story started in the ����s� and von Neumann�
Metropolis� Ulam� and Lehmer may be named among the pioneers in the
�eld�
John von Neumann apparently conjectured the potential� of computers for
stochastic simulation in ���� when he wrote �
��� �It �the computer� will
certainly open up a new approach to mathematical statistics� the approach
by computed experiments � � �� During the ���s� computer based stochastic
simulation remained restricted to secret projects of the U�S� Department of
Defense� The publication of �The Monte Carlo method� by N� Metropolis
and S�M� Ulam �
�� in ���� denotes the beginning of the �o�cial� history of
this method �according to �
�� p������ Two years later� D�H� Lehmer ����
proposed the linear congruential generator which 	 with a slight generaliza�
tion by Thomson ����� and� independently� Rotenberg ���� 	 was to become
today�s most widely used method for random number generation�

������� Before we actually propose some algorithms for generating �ran�
dom� numbers� let us state the problem a little more precise� The mathe�
matical object we want to model is a sequence �Xn�n�� of random variables
which are stochastically independent and equidistributed on ��� �� �or� in
some examples� on f�� �g�� We are looking for algorithms to produce a se�
quence of numbers �xn�n��� such that the xn can be taken as realizations of
the Xn� Since every stochastic simulation on a computer is expected to end
in �nite time� it can only consume a �nite amount of �random� numbers�
we can therefore restrict our attention to the �nite sequences or vectors
X � �Xn�

N��
n�� and x � �xn�

N��
n�� �

Most stochastic models are based on random variables with distributions
di�erent from the uniform distribution on ��� ��� however� the latter is used as
a �point of common reference� from which the desired distribution is obtained
by various transformation methods �which are� among others� discussed by
Devroye in �
�� or Ripley in ���� Chapter �� ����

�It is interesting to note that the advent of computer based stochastic simulation
happened to coincide with the advent of the �rst really bad �random
 number generator�
the middle�square method has many undesirable properties which are discussed in detail
by Knuth in ���� pp������
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������� In Chapter 
� we �rst re�ect on how to assign some degree of
randomness to a �nite sequence of random numbers� restricting our consider�
ations to numbers and random variables in f�� �g� we compare the numbers
x � �xn�

N��
n�� to the mathematical object they should model� the random

variables X � �Xn�
N��
n�� � In this way� we �nd that� in general� any sequence

x is as �good� as any other sequence y� any random number generator is as
�good� as any other� no matter which sequence it produces� Therefore� it is
impossible to �nd a generator which is �good� in general�
Fortunately� the term �in general� is essential for the above statement to hold�
If some information about the simulation problem or a class of simulation
problems is available� we will be able to assign some degree of quality to gen�
erators� and di�erent generators will di�er in quality� Our intuitive prefer�
ence for some generators to others� simply presupposes certain assumptions
about our simulation problem� We develop a mathematical device which
forces us to make these assumptions explicit and which enables us to make
reasonable assessments of a random number generator�s quality�

In Chapter �� we generalize our observations on random numbers in
f�� �g to the more interesting case of random numbers in ��� ���
Applications of our approach for assessing a generator�s quality are given

in Chapter �� The applications mostly use existing mechanisms like statis�
tical tests� but provide a deeper understanding of their relevance�

Finally� we present and study some random number generators in Chap�
ter ��

The two appendices contain some arguments and derivations needed by
or being related to the main text� Both are entirely self�contained and can
be understood without reading any of the other chapters� However� within
the main text� we point out when an appendix might or should be read�

�Think of simulating games of roulette with a sequence of integers in f�� � � � � ��g� you
will almost certainly rate a sequence which repeats �Zero
 all over again as �worse
 than
any sequence without such obvious regularity�






Chapter �

Running for randomness �

heat �

I would like� ah� if I may�
� � � to take you on a strange journey�

� Narrator� The Rocky Horror Picture Show

��� The notion of a sequence of random numbers

�
����� Before we start searching for random number generators that pro�
duce a �good� random number sequence x � �xn�

N��
n�� � we give a precise

de�nition of this notion� Everybody seems to have a clear idea of what ran�
dom numbers are� but when asked to give an explicit de�nition� things get
complicated� Knuth ���� p�
� observes� �People who think about this topic
almost invariably get into philosophical discussions about what the word
�random� means� In a sense� there is no such thing as a random number� for
example� is 
 a random number��

�
���
� The mathematical object we are about to model� the vector
of N random variables X � �Xn�

N��
n�� is uniquely de�ned by the axioms

of Kolmogorov ����� But how to de�ne a sequence x of random numbers�
Knuth describes this problem in ���� p���
� as this� �The mathematical the�
ory of probability and statistics carefully sidesteps the question� it refrains
from making absolute statements� and instead expresses everything in terms
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of how much probability is to be attached to statements involving random
sequences of events� The axioms of probability theory are set up so that ab�
stract probabilities can be computed readily� but nothing is said about what
probability really signi�es� or how this concept can be applied meaningfully
to the actual world�� Similar opinions are expressed by Ripley in ���� p����
and Schnorr in ����� p�
��

There are of course attempts to give the notion of a sequence of random
numbers a precise meaning� We refer the interested reader to Kac ��� or La�
garias ���� for surveys and to Knuth ���� Section ���� ��� � or Schnorr ����� for
more thorough treatises� However� as Anderson notes in ���� be �warned that
you will �nd many mathematical esoterica that� at present� have very little
to do with the actual generation of random numbers on today�s comput�
ers�� In our opinion� the most interesting approach is given by Compagner
in ��
�� in particular� this approach complies with what we are going to �nd
out in this and the following chapter� However� none of the various concepts
succeeded in becoming a widely accepted standard so far�

The lack of a standard de�nition of a sequence of random numbers has
led to some rather peculiar arguments for the quality of random number
generators� in ���� p������ Frederickson et� al� claim about their generators
�which they call pseudo�random trees� that there is �no good reason to
believe that any other family of pseudo�random trees o�ers any advantages��

�
����� For our purposes� we will get along with a very simple de�ni�
tion of a random number sequence� Its simplicity is admissible because the
sequences we are concerned with are computer�generated and therefore not
random anyway� Moreover� it is admissible since we will show that every
x � ��� ��N is as good in approximating the random vector X as any other�
y � ��� ��N �
Our de�nition is derived from Hammersley and Handscomb ��
� p�
��� �The
essential feature common to all Monte Carlo computations is that at some
point we have to substitute for a random variable a corresponding set of
actual values� having the statistical properties of the random variable� The
values that we substitute are called random numbers �� � ���� We will treat
the problem of the �quality� of a random number sequence separately� so we
can de�ne it without demanding any statistical properties�

�This seems to be quite obvious for N � � as indicated by Knuth above� but for large
N � say� N � ���� intuition plays a trick on us�
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De�nition ��� A sequence x � �xn�
N��
n�� � ��� ��N is called a �nite se�

quence of random numbers� if � while performing a stochastic simulation �
x is substituted for a sequence X � �Xn�

N��
n�� of independent and on ��� ��

equidistributed random variables�

For convenience� we will drop the adjective ��nite� and refer to x as a se�
quence of random numbers� knowing it is �nite anyway� Instead of numbers
in ��� ��� numbers in f�� �g or vectors in ��� ��s are required sometimes� We
de�ne a �nite sequence of random numbers in f�� �g or of random vectors
in analogy to above �i�e�� say� as N vectors in ��� ��s which 	 while perform�
ing a stochastic simulation 	 will be substituted for N independent random
quantities which are equidistributed on ��� ��s��

In the sense of this de�nition� a sequence of numbers is called �random�
simply because it is being used as substitute for a sequence of random vari�
ables� One may expect that this de�nition allows a sequence of random
numbers to vary signi�cantly in quality� intuitively� one would assign much
less randomness to the sequence �xn � ��

N��
n�� than to most of the other

conceivable sequences of length N � However� besides intuition� we have no
means of assessing this quality so far� This is a major problem to be solved�
because� as Niederreiter �
�� p�
� notes� �The success of a Monte Carlo cal�
culation often stands or falls with the �quality� of the random samples that
are used� where� by �quality�� we mean how well the random samples re�ect
true randomness�� From what we have seen before� it is clear that a precise
notion of quality is not easy to �nd� The above quotes from Hammersley and
Handscomb as well as Niederreiter suggest that certain statistical properties
will play a major role in measuring a random sequence�s quality�

��� Scoring sequences of random numbers with

statistical tests

�
�
��� When assessing the quality of a sequence x � �xn�
N��
n�� of random

numbers� we try to �nd out how closely it matches the mathematical object
it should model� the sequence X � �Xn�

N��
n�� of random variables� In this

vein� we have to compare two things which defy direct comparison� random
variables which are indeterminate by de�nition and pre�determined num�
bers� All we can do is check whether or not x gives a good representation
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of certain statistical properties of X or 	 putting it the other way round 	
whether the stochastic object X gives a good description of the behavior of
the numbers x� Stated formally� given x� we have to choose one of the two
alternatives below�

H� � The numbers xn can be considered as realizations of the random vari�
ables Xn�

H� � The above statement does not hold�

This is the traditional setup for a statistical test�

Throughout the literature� random numbers are assumed to have statis�
tical properties of random variables and to pass statistical tests� Lehmer� for
example� de�nes a random sequence in ���� as �a vague notion embodying
the idea of a sequence �� � �� whose digits pass a certain number of tests� tra�
ditional with statisticans and depending somewhat on the uses to which the
sequence is to be put�� Or with the words of Knuth ���� p��
�� �The theory
of statistics provides us with some quantitative measures for randomness�
�� � �� If a sequence behaves randomly with respect to tests T�� T�� � � � � Tn� we
cannot be sure in general that it will not be a miserable failure when it
is subjected to a further test Tn��� yet each test gives us more and more
con�dence in the randomness of the sequence�� For more examples of this
approach� see Hammersley and Handscomb ��
� p�
�� or Ripley ���� p�����
We will see later in �
����� and Section ��� if the con�dence suggested by
Knuth has a �rmer foundation than bare intuition�

�
�
�
� Given two sequences x�y of random numbers and a set of tests
F � we can identify the set Fx of tests in F passed by x and the analogous set
Fy for y� There are several possible ways to compare x and y� we consider

Criterion ��� x is at least as good as y if x passes at least as many tests
as y�

 Fy �  Fx�

In addition� we try�

Criterion ��� x is at least as good as y if x passes at least the tests passed
by y�

Fy � Fx�
�We would like to thank Otmar Lendl for suggesting this one�
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�
�
��� To apply these criteria to speci�c x and y� we need a tighter grip
on the sets F � Fx� and Fy and therefore on the decision mechansim used
by statistical tests in general� Let us study the basic function of statistical
tests on a simple problem� given the results of N successive coin tosses� we
are asked to decide if the coin is fair� Setting xn � � for �heads� on the n�th
toss and xn � � otherwise �n � �� � � � � N � ��� we can formalize the problem
as follows�
Given the sample x � �x�� � � � � xN���� we have to decide between the follow�
ing two hypotheses�

H� � The xn are realizations of random variables Xn which are independent
and equidistributed on f�� �g�

H� � The above statement does not hold�

Unfortunately� H� is so vague that it renders every ����sequence of length
N possible� each with probability ��
N � Whatever values the xn may have�
each design is compatible with H�� Whenever one decides in favor of H��
misjudgement is therefore always possible� If the possibility of a wrong
decision cannot be removed� one tries to decide so that at least the probability
of a wrong decision is small� Thus� if H� holds� we want the event � H� of
choosing H� to be quite improbable� Denoting �quite improbable� by some
probability � with � � �� �� say� � � ����� we want

P �� H�jH�� � ��

We can picture a statistical test as a decision rule T which� for every x �
f�� �gN � either yields T �x� � � if one decides in favor of H� or T �x� � � if
H� is favored� A decision for H� while H� holds is quite improbable if

P �T �X� � �� � ��

Such a T is called statistical test with level of signi�cance �� sometimes� we
will refer to it as �	test� for short�
Deciding whether a coin is fair� one usually focuses on the number S�x� of
�heads� which should be close to its expected value N�
� If the number of
�heads� deviates heavily from this� say� by more than some constant c� there
might be reason to favor H� and regard the coin as unfair� It remains to
choose c such that

P

�����S�X�� N




���� � c

�
� ��

��



With this� the statistical test T with level of signi�cance � is complete� we
set T �x� � � if jS�x�� N�
j � c� T �x� � � otherwise� and get P �T �X� �
�� � ��

�
�
��� Observe that this framework of identifying an �	test with an
event T with P �T � �� � � is quite universal� As L�Ecuyer notes in ����
p����� �any function of a �nite set of i�i�d� uniform random variables can be
used as a statistic to de�ne a test of hypothesis� if its distribution is known��
�The same argument is put forward by Marsaglia in �
�� p����� This holds in
particular for the events T we considered� every event T with probability �
de�nes an �	test� On the other hand� every statistical test can be expressed
as an event T with probability �� We can conclude that the set of all possible
�	tests equals the set of events T with P �T � �� � ��

Picturing statistical tests as events is not very useful for actually per�
forming a test� The reader should keep in mind that we are after sets of
statistical tests� speci�cally F � Fx� and Fy which are needed to apply Cri�
terion 
�� and 
�
�

�
�
��� Let us now consider a similar problem which is exactly what we
are looking for� given the results x�� � � � � xN�� of N successive coin tosses
simulated by a computer program� we are asked to decide if the xn are
su�ciently random� i�e� if they behave like realizations of random variables
Xn which are statistically independent and equidistributed on f�� �g� Again�
we have to choose one out of two hypotheses ��

H� � The xn are realizations of random variables Xn which are independent
and equidistributed on f�� �g�

H� � The above statement does not hold�

And again� we search for a statistical test T with level of signi�cance �� In
the example above� we had T �x� � � if jS�x� � N�
j � c and T �x� � �
otherwise� which was some sort of �natural� choice� nobody being interested
in the fairness of a coin would reasonably check if the nonoverlapping pairs
�x�� x��� �x�� x��� � � � are equidistributed on f�� �g � f�� �g or if the number
of �runs� in the sequence� is close to its expected value �N ! ���
�

�Note this problem is formally equivalent to the one above�
�The number of runs in the binary sequence �xn�

N��
n�� is the number of maximum length

blocks xn� � � � � xn	k in the sequence which consist entirely of �s or entirely of �s�
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In the present context however� tests based on these aspects are perfectly
reasonable�" We have no �natural� choice for a statistical test T � for a user
who takes the xn as input for his simulation� any statistical aspect could
be of fundamental importance� Having no information about the statistical
aspects the user considers relevant� we have to treat all statistical tests as
equally important� Concerning the two criteria� this means the set F should
include all statistical tests with level of signi�cance equal to	 ��

If we consider all �	tests as equally important� we may take interest
in the total number  F of these tests� A statistical test with level of sig�
ni�cance � is an event T on f�� �gN with P �T � �� � �� Any event T
on f�� �gN is� in turn� uniquely de�ned by the set A of those elements x
for which T �x� � �� given A� the event can be written as T � �A� For
an event �A� we have P ��A�X� � �� �  A�
N �Note that demanding
P ��A�X� � �� � � implicitly requires that � is rational and �
N is an
integer�� Hence there are as many �	tests as there are subsets of f�� �gN
with �
N elements� The set F of all �	tests is

F �
n
�A � A is a subset of f�� �gN with  A � �
N

o
�

and their number is

 F �
�

N

�
N

�
�

Now that we know F � we can focus on the set Fx of tests from F passed
by x� Since the sample x passes an �	test T � �A if and only if x �� A� we
get

Fx � f�A � �A � F � x �� Ag �
and elementary combinatorics yields

 Fx �
�

N � �
�
N

�
�

Doesn�t something strike you mind� � � �  Fx is independent of x" For any
two samples x and y � f�� �gN� we have

 Fx �  Fy�
�Among others� aspects like these are checked by Knuth
s tests on random number

generators in ���� Section �����
�We could as well have allowed F to contain all tests with level of signi�cance � � or

with level of signi�cance between two bounds �� and ���� the generalization is so obvious
that it is left to the reader�

��



In words�

Each binary sequence of length N passes exactly the same num�
ber of statistical tests�

What about the criteria we wanted to use for rating sequences of random
numbers� Criterion 
�� is obviously useless since it rates any x as �good� as
any other y� Criterion 
�
 is useless as well� assume we rate x as actually
better than y on the basis of Criterion 
�
� Then

Fy � Fx
in the sense that Fy is a proper subset of Fx� This would imply

 Fy �  Fx�

which 	 as we have seen above 	 cannot be�

One might argue that this phenomenon stems from our sampling from
the simple set f�� �g� but in vain� Sampling from f�� �� 
� � � � �M � �g� we
get the same results as above with just 
N replaced by MN in the formulas�
Moreover� the same problem occurs if we sample from the continuum ��� ��
instead of a �nite set� The reader might believe this by taking the discrete
case as an intuitive basis or see Chapter � for a formal proof�

�
�
��� This is where we end up�

There is� in general� no reason to regard any x as more random
than any other� There is� in general� no reason to attribute
randomness to any such x�

The reader will now sense the reason in our rather unusual De�nition 
�� of
a �nite sequence of random numbers�

This problem is well known� of course� although seldom stated explic�
itly� it surfaces all through the literature� Niederreiter notes in �
�� p������
�Early in the history of the Monte Carlo method� it already became clear
that �truly random� numbers are �ctious from a practical point of view�
Therefore users have resorted to pseudorandom numbers �abbreviated PRN�
that can be readily generated in the computer by deterministic algorithms
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with relatively few input parameters� �� � �� It should be clear that a de�
terministic sequence of numbers cannot perform well under all imaginable
tests for randomness�� These observations� although sobering� are particu�
larly important for the computer	generated sequences we are searching for�
concerning the �quality� of a given x� it is unimportant how the numbers
were obtained� No matter how elaborate the physical source of randomness�
no matter how sophisticated the random number generator� the produced
sequence is as random as any other� Once the sample is known� all the ran�
domness seems to evaporate in a pu� of logic
�
Knuth ���� p�
� observes� �In a sense� there is no such thing as a random
number�� he continues ���� p������ �In a similar vein� one may argue that
there is no way to judge whether a �nite sequence is random or not� any
particular sequence is just as likely as any other one��

Apart from the fact it is already being done rather successfully� we have
reason to worry if substituting �nite sequences of random numbers for ran�
dom variables in stochastic simulations makes any sense at all� �the quality
of a generator can never be proven by any statistical test��� as L�Ecuyer
notes in ���� p����� and we have seen this holds in a very general sense�
Knuth ���� p����� parries with intuition� �Still� nearly everyone would agree
that the sequence ��������� is �more random� than ���������� and even the
latter sequence is �more random� than ����������� In fact� Knuth�s parry is
based on more than just a �feeling�� if you take the three sequences above to
simulate a fair coin� the third sequence is quite likely to produce the worst
result�

�
�
��� All the trouble started when we regarded all �	tests as equally
important� the reason for this was that we had no information about which
statistical aspect might be relevant for the user in his simulation�

The set F of all �	tests is simply too large to render a given
sample superior in quality to any of the others�

If intuition and real�world experience teach us to prefer certain sequences
x for certain simulation problems� we apparently base our preference on
some restricted test set F or on some nonuniform weighting of relevance on


It is discomfortingly easy to see that even the strong law of large numbers seizes to
hold once they are determined� i�e� once the random variables are replaced by actual
values�
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this set� Considering some tests as very important and others as virtually
irrelevant �for a given simulation problem� seems to be the key for �nding
�good� random sequences� It is just as Niederreiter �
�� p����� recommends�
�Therefore the user of PRN must be aware of the speci�c desirable statisti�
cal properties of the random samples in the current computational project
and must choose PRN that are known to pass the corresponding statistical
tests�� In real�world applications� preferences based on such restrictions or
weightings of relevance actually perform quite well� for most simulations you
could conceive� your favorite random number sequence actually will behave
more random than the sequence �xn � ��

N��
n�� � although there is no reason

for this in general�
Let us set out to �nd a criterion of quality which forces the hidden restric�
tions and weightings of relevance imposed by intuition to surface�

��� Two ways out

�
����� Considering the set F of all statistical tests with level of signi�cance
�� we found this set to be too large to attribute any special status of �ran�
domness� to a �nite sequence x of random numbers� The above quote from
Niederreiter already suggests that� for choosing a �good� x� one should focus
on �the speci�c desirable statistical properties of the random samples in the
current computational project�� This means we are free to ignore some tests
�if they are based on statistical properties which are of no interest�� while
others should be more emphasized� But how to �nd the important tests�
how to sort out the irrelevant ones�
An idea of Hammersley and Handscomb in ��
� p�
�� might help� �one of
the tests that might have been applied is whether or not the random num�
bers yield an unbiased or a reliable answer to the Monte Carlo problem
under study� and it is really only this test that interests us when we are
ultimately concerned only with a �nal numerical solution to a particular
problem� Taken in this second vein� the other tests are irrelevant�� There
is truth in this� what else could a user be interested in than in a good
approximative answer to his simulation problem�

�
���
� A given �Monte Carlo problem under study� is usually comprised
of two successive approximations� The �rst one is pictured by Ripley ����
p��� as follows� �In its technical sense simulation involves using a model to
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produce results� rather than experiment with the real system under study
�which may not yet exist�� For example� simulation is used to explore the
extraction of oil from an oil reserve� If the model has a stochastic element�
we have stochastic simulation�� So the basic subject of the user�s interest is
some �real system� TR� which either cannot be described by a deterministic
model� or whose deterministic model is far too complex to be tackled by
today�s mathematical methods directly� He therefore develops a stochastic
model� i�e� a random variable� TS coinciding with TR �in the mean�� and
focuses his attention on the expectation E�TS�� This �rst approximation�
the modelling of a real�world object by a mathematical� stochastic one is 	
for our purpose 	 of no interest� the quality of this modelling is solely in the
user�s responsibility�
Given TS � Ripley ���� p��� continues� �To make use of a model one has two
choices�

�� To bring mathematical analysis to bear to try to understand the
model�s behavior� �� � ��


� To experiment with the model��

If the user can derive E�TS� by analytical methods� he should do so and
forget about any computer simulation�� Otherwise� he has to construct an
estimator F for E�TS�� which will be simulated on a computer� In general�
an estimator F for E�TS� is a random variable with

E�F � � E�TS�

and
V �F � � V �TS��

To be simulated using a sequence of random numbers� F has to take the
form F �X� with X � �Xn�

N��
n�� � where the Xn are independent random vari�

ables� each equidistributed on ��� ��� X will be substituted by some random
numbers in the actual simulation� Observe that the movement from TS to

�Any model which has a stochastic element depends on a more or less complex random
quantity expressing the stochastic element� Since the model is governed by the random
quantity� the model is a random quantity itself�

�Computer simulations of a stochastic model are often believed capable of revealing
some extra information which could not be derived by analytical methods� but how can a
computer�program make statements which are not contained in the mathematical model
it is derived from�
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F is no approximation since the random variables� expectations coincide�
The second approximation is what we are concerned with� the user chooses
some sequence of numbers x� computes F �x�� and uses this value as an
approximation of E�F � � E�TS� �Note that in our terminology� the compu�
tation of F �x� already is the whole stochastic simulation����

�
����� When should we regard the numbers x as �good� with respect
to the simulation F� Well� obviously if

#x�F � �� jF �x��E�F �j

is small�

By introducing #x�F � to measure the quality of x in simulating F � we
have preserved the idea that �it is really only this test that interests us
when we are ultimately concerned only with a �nal numerical solution to a
practical problem�� Moreover� #x still does permit us to perform statistical
tests� Let T be an �	test� i�e� P �T � �� � E�T � � �� If � � ��
 	 which
is not much of a restriction since nobody would reasonably apply a test
with is likely to yield the wrong result 	 a sequence x passes T if and only
if #x�T � � ��
� We can conclude that #x gives a measure more general
and more �exible than statistical tests alone� Given F � #x�F � measures the
deviation of the computed result from the desired result���

So far� we have de facto eliminated the notion of randomness� the problem
is reduced to approximating E�F � which in turn is an integral� However� if
the user knows x to be good with respect to a given problem F � he may use
these numbers to simulate F acting as if they were random� their behavior
is 	 with respect to F 	 close to the expected behavior of random variables�
and the elimination of randomness does not really matter� As Knuth ����
p��� states �about computer	generated sequences�� �The answer is that the
sequence isn	t random� but it appears to be� �� � �� Being �apparently random�
is perhaps all that can be said about any random sequence anyway��

�
����� The measure of quality #x developed so far has one severe
�aw� we can assess the quality of x with respect to only one problem F �

��For example� if TS is a function of three random variables �the stochastic element in
the model�� i�e� TS � f�X��X��X��� a quite popular choice for F is to �x a large number

M � say� M � ���� N � �M � and set F �X� �� ��M
PM��

n��
f�X�n�X�n	��X�n	���

��A notion of quality similar in spirit but not formally is developed by Fuss in ���� using
Petri nets to generate random decisions�
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so all we can �nd is a good special�purpose sequence x� This is not what
people are looking for� they demand sequences of numbers which are good
for simulating a variety of problems� a set F of problems F �
Given a set of problems F and a sequence x of random numbers� we consider

Criterion ��� x is good with respect to F if

sup#x �� sup f#x�F � � F � Fg

is small�

Based on this criterion� the existence of good sequences with respect to
a certain set F of practical relevance is shown by the theory of good lattice
points �see Hlawka ���� and Korobov ��
��� The set F contains all functions
of the form F � ��N

PN
i�� f � where f is a function with in some sense rapidly

decreasing Fourier coe�cients� But� as Larcher and Traunfellner note in �����
�especially for dimensions s � �� it turned out to be a challenge to give fast
algorithms for �nding good lattice points�� A similar approach based on
Haar instead of Fourier series was initiated by Sobol� �see ����� ����� and
developed to its full extent by Niederreiter �see �
�� Chapter ���� The shift
from Fourier to Haar series has the advantage that methods to construct
good samples for problems in higher dimensions have been found� The
good samples x for this set F are called LP�	sets by Sobol� and �t�m�s�	
nets by Niederreiter��� Shifting again� this time from Haar to Walsh series�
Larcher and Traunfellner show in ���� ��� that �t�m�s�	nets are in some sense
the best possible choice for approximating problems from the corresponding
F � In ������ Schmid gives an introduction to �t�m�s�	nets together with
implementations for serial and parallel computer architectures�

For our present purpose� however� Criterion 
�� is not �exible enough�
the supremum tends to focus on �local� properties of #x� If� for example�
x 	� y and F is comprised of some statistical tests with level of signi�cance
� � ��
� then we have

sup#x � sup#y

if and only if


T � F � T �x� � � and

�T � F � T �y� � ��

��Niederreiter
s notion of a �t�m�s��net is a generalization of Sobol
s LP��set�
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The supremum assigns each sequence to one of two distinct sets� those
sequences which pass all tests in F �the �good� set� and those which fail
at least one of them �the �bad� set�� This leaves us with no possibility to
di�erentiate the �good� set�
A possible remedy might be to extend F by additional problems or tests�
But doing so� we stumble over the next in�exibility of Criterion 
��� adding
or removing just one problem from F can completely change our evaluation
of sup#x"

�
����� To get a more �exible criterion� recall that we have conjectured
the necessity of F being weighted in �
�
���� For a �nite set of problems F �
let w be a nonnegative weighting function on F � Excluding in�nite weights�
we may assume

P
F�F w�F � � �� With this� we regard x as �good� with

respect to F and w if
Ew�#x� ��

X
F�F

#x�F �w�F �

is small 	 if #x is small in the 
weighted� mean�
We generalize this to problem sets F of arbitrary size by employing a
measure�� on F in

Criterion ��� Let �F �R� �� be a probability space such that #x is a random
variable�
The �nite sequence x of random numbers is good with respect to the problem
set F and the probability measure � on F if

E��#x� ��

Z
F
#xd�

is small�

Although Criterion 
�� seems to be completely di�erent from Crite�
rion 
��� we will show in Section ��
 that under certain assumptions they
are in fact equivalent�

In the spirit of this criterion� the search for good random number se�
quences becomes a two step process� �rst the user supplies some probabilis�
tic description of the problem�s� he is interested in� and then we propose

��If you are not familiar with the notion of measure� just think of it as generalization
of the weighting function w on �nite F � The weighted sum over a �nite set is generalized
to an integral over an in�nite set�







a good number sequence according to the given information� Observe how
much responsibility is loaded on the user this way� If his description is
inadequate� so may be the proposed number sequence� But observe also
that this is not just a mathematician�s trick to avoid being blamed for the
proposal of bad number sequences� since no �nite sequence of numbers is
random by itself� the user who wants to simulate a random variable using
well�determined numbers has to take the burden of specifying which prop�
erties of randomness are relevant for him�

�
����� There are some useful interpretations of E��#x�� as described
above� � can assign di�erent �grades of interest� to subsets of the problem
set F � Subsets the user considers vital are assigned high measure� while
low measure is assigned to subsets which he thinks are interesting enough
to be contained in F but not very important� If a sequence x is good with
respect to F and � in the above sense� the average weighted error by which
x approximates the problems in F is small�
A second interpretation is from the mathematician�s point of view� Given
the set F and the measure �� the mathematician faces the following problem�
He has to propose a sequence x to the user� According to the probability
measure �� the user will randomly select a problem F from F � estimate
E�F � by F �x�� and punish the mathematician �by lowering his reputation�
cutting his salary� applying physical violence� or whatever else he considers
appropriate� proportional to the resulting estimation error� E��#x� is the
punishment the mathematician can expect� choosing x as to minimize the
expected punishment seems a very reasonable approach�

�
����� The reader may object that measures on such complex sets as
F are hard to �nd and that� even if an appropriate � can be found� the com�
putation of E��#x� is 	 technically 	 not always possible� There is reason
in this� of course� However� in all examples given in Chapter �� we will get
along with much less than the full��edged measure �� and even the precise
extent of the problem set F will almost never be required� To demonstrate
how this is possible� recall Niederreiter�s recommendation from �
�� p�����
to �be aware of the speci�c desirable statistical properties of the random
samples in the current computational project and �� � �� choose PRN that are
known to pass the corresponding statistical tests��
Suppose G is a set of estimators for a gambler�s gain in successive rounds of
roulette following one of several strategies��� #x�G� is the approximation

��There is quite a variety of ways to simulate this� just think of the various conceivable
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error produced by x when simulating a given G � G� Next� suppose H is a
set of statistical tests with level of signi�cance � � ��
� each of which checks
for the statistical properties desirable for simulating the gambler�s gain���
and let $x�T � �� jT �x�� �j be the error�	 produced by x when subjected
to a test T � H� Now let F �� G � H and let �F �R� �� be a probability
space such that #x and $x are random variables�
In general� precise knowledge of �F �R� �� is required to compute E��#x�
and E��$x��
Now suppose all we get to know is that the random quantities #x and $x
are positively correlated� Informally� this means if x passes a test randomly
selected from H �yielding $x � ��
�� #x is likely to be small� too� Given
only this information� we will show without much e�ort in Section ��� that

E��#xj$x � ��
� � E��#x� � E��#xj$x � ��
�

for any probability space �F �R� �� for which the positive correlation of #x
and $x holds�
In this way� Knuth�s argument ���� p��
� 	 which was based on no more
than intuition in the light of Criterion 
�� and 
�
 	 does make sense� �If a
sequence behaves randomly with respect to tests T�� T�� � � � � Tn� we cannot
be sure in general that it will not be a miserable failure when it is subjected
to a further test Tn��� yet each test gives us more and more con�dence in
the randomness of the sequence�� When the hidden assumption of positive
correlation is made explicit� the �con�dence� can be proven�

algorithms to transform the random numbers in x into lottery results�
��Again� there are many ways to check for these properties� think of varying the level

of signi�cance of the test� the sample size considered� the test statistic� or the region of
acceptance�

��This is �x�T � � ��� if x passes the test T and �x�T � � ��� otherwise�
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Chapter �

Running for randomness �

heat �

Expect the unexpected�
� Douglas Adams� The Hitch Hiker	s Guide to the Galaxy

We have seen that no �nite ����sequence is per se more random than
any other� In this chapter� we will state this in a more general context� for
any �nite sequence of numbers in ��� ��� The reader who is convinced that
analogous results hold for this more complex set and who does not want to
get involved into mathematical details may skip this chapter� Here� we will
use no ideas not already presented before� but we hope the mathematical
generalization will provide a deeper insight in the phenomenon�s nature�

��� Finite sequences of random numbers in ��� ��

������� Our previous considerations were restricted to the particular set
f�� �gN � We have tried to �nd out if a sequence x of N numbers xn in f�� �g
can be used to model a sequence X of N random variables Xn which are
independent and equidistributed on f�� �g� The sequence X is a random
variable with values in f�� �gN and 	 due to the independence of the Xn

	 it is equidistributed on f�� �gN � Thus X is a random variable on the
probability space �f�� �gN �P�f�� �gN�� p�� where P�f�� �gN� is the family of
all subsets of f�� �gN and p is the normalized counting measure on f�� �gN �
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Searching for a �good� sequence of random numbers� we tried to model the
random variable X by means of a speci�c sample x � f�� �gN �see �
�
�����
Now we will do the same for the more complex probability space
���� ��N�B
���
N � �N�� B
���
N is the Borel 	�algebra on ��� ��N with respect
to the standard topology and �N is the N �dimensional Lebesque measure
restricted to ��� ��N � This probability space has the following three helpful
mathematical properties which we will use in the proofs�

�����
� The real�valued random variables X�� � � � � XN are independent
and equidistributed on ��� �� if and only if the vector X � �X�� � � � � XN� is
a random variable on ��� ��N with probability measure �N � So the probabil�
ity space ���� ��N�B
���
N � �N� is exactly what we are concerned with when
searching for a �good� sequence of random numbers in ��� ���

������� For x�y � ��� ��N� we de�ne x! y as the component�wise sum
of x and y� reduced modulo �� for x � �xn�

N��
n�� and y � �yn�

N��
n�� � let

x! y �� �xn ! yn mod ��
N��
n�� �

Then ���� ��N�!� is an abelian group�

������� The measure �N is invariant under translation� for any A �
B
���
N and any c � ��� ��N� we have

�N�A! c� � �N�A��

Another way to state this is to observe that� for any c � ��� ��N� the trans�
lation

Tc � x ��
 x! c

is a measure�preserving function�

The background of this is the fact that there is a topology 
 on ��� ��N

such that ���� ��N�!� 
� is a compact abelian group� 
 is very similar to
the standard topology� in fact� the Borel 	�algebra with respect to 
 is
equal to B
���
N � For any compact abelian group� the existence of an unique
translation�invariant probability measure� the so called Haar measure can
be proven� In our case this measure is just �N � For more information on
compact abelian groups and Haar measures� see Cohn ���� Section ��
��
We can� of course� state our problem of �nding a �good� x for a general
compact abelian group instead of the speci�c group ���� ��N�!� 
�� Proposi�
tion ��� and ��� as well as Part 
 of Proposition ��
� which we prove in this
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chapter� can easily be proven in this general case� The proofs of Part � and �
of Proposition ��
 however� which are in fact the most interesting ones� rely
heavily on the speci�c structure of ���� ��N�!� 
��

������� Just as we considered the set of all statistical tests on f�� �gN
with level of signi�cance �� we will now consider the analogous set of all
�	tests on ��� ��N as well as more complex sets of problems� A problem set
might be� say� for any given random variable Y � the set F of all estimators
for E�Y � or the set F of all such estimators whose variances are less than
some � � �� and so on� In general� any F � L����� ��N�R� can be taken as
a problem set� this is any set of real�valued functions F whose expectations
E�F � exist and are �nite��

We will show that no �good� random numbers can be found as long as
the test set F is invariant under translation� So if F is a test function from
F �which serves some purpose like being a statistical test or estimating some
E�Y ��� then each translated test function F � Tc �which is a statistical test
or an estimator for E�Y � as well� is in F � too� Let us state this formally�

De�nition ��� A set F � L����� ��N�R� is called unbiased if


F � F 
c � ��� ��N � F � Tc � F �

It is easy to see that the set of all ��tests or the set of all estimators for a
given random variable�s expectation is unbiased because the translation Tc
is measure�preserving�

������� To evaluate the �quality� of a given sample x � ��� ��N� we
proceed as in Section 
��� for any simulation problem F � L����� ��N�R��
we measure the �quality� of x in simulating F by

#x�F � �� jE�F �� F �x�j �
where E�F � is the integral of F with respect to �N � For a given test set
F and a �xed error bound � � �� we consider the set Fx of those functions
whose expectations x approximates by an error less than ��

Fx �� fF � F � #x�F � � �g �
�The symbol L����� ��N �R� denotes the set of all real�valued� measurable functions on

��� ��N for which the Lebesque integral
R

���
N

jF jd�N is well�de�ned and �nite� Note that

E�F � is just de�ned as
R

���
N

Fd�N �
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Note that Fx implicitly depends on �� For the rest of this chapter� we assume
that � is some �xed� positive error bound�
The quality of x with respect to F depends on the size of Fx� We will show
that� for unbiased test sets F � the size of Fx does not depend on x�

Before we can do so� we have to deal with a phenomenon which did
not occur in the �nite probability space on f�� �gN considered before� the
existence of nonempty sets of measure zero� The function ��� which assigns
� to each x� is a statistical test with level of signi�cance � 	 it accepts every
sample� This statistical test is of course meaningless� The function �fxg is a
statistical test with level of signi�cance � as well� but it rejects the sample
x since �fxg�x� � �� However� this test looks quite pathological� too� We
refer to all functions which have the same property as trivial functions�

De�nition ��� A function F � L����� ��N �R� is called trivial if

�N
�n
x � ��� ��N� #x � �

o�
� f�� �g�

��� Three propositions

We have presented four criteria to measure the quality of a given sample
x in Chapter 
� Here� we will show that whenever F � L����� ��N�R�
is unbiased� the �rst three criteria do not allow the proposal of a �good�
sequence of random numbers x � ��� ��N�

Proposition ��� For any unbiased set F � L����� ��N�R� and any x�y �
��� ��N� there exists a bijection $ from Fx onto Fy�

Remark� If F is unbiased� Proposition ��� yields

x�y � ��� ��N�  Fx �  Fy�

In this case� Criterion 
�� is useless�

Proof� Let F � L���� ��N�R� be unbiased and let x�y � ��� ��N be
�xed� We will construct a bijective and measure�preserving function T �
��� ��N
 ��� ��N� use T to de�ne the mapping

$ � Fx �
 Fy
F ��
 F � T�







and show that $ is bijective�

If �y is the inverse of y in ���� ��N �!�� we de�ne T as the translation by
x� y�

T �� Tx�y �

T is bijective� because ���� ��N�!� is an abelian group� and it is measure�
preserving because �N is invariant under translation�

To see that $ is well�de�ned� let F � Fx�

#x�F � � ��

Because F � T �y� � F �x� and because T is measure�preserving� we have

#y�F � T � � ��

which means $�F � � Fy�
To show the injectivity of $� let F� F � � Fx and

F � T � F � � T�

Since T is bijective� it immediately follows that F � F ��

To show the surjectivity of $� let G � Fy� Using the same argument as
in showing that $ is well�de�ned� we get

G � Ty�x � Fx
and� due to the commutativity of !�

$�G � Ty�x� � G

With this� the mapping $ is a bijection from Fx onto Fy� �

Of course� the existence of a bijection between two sets does not imply
they are of equal size� There is� for example� a bijection from ��� ��
� onto
��� ��� But since ��� ��
� is a proper subset of ��� ��� ��� ��
�� ��� ��� the
former is usually considered smaller than the latter�� We show that such an
inclusion cannot occur between the sets Fx and Fy when F is unbiased and
non�trivial�

�Observe that we use the symbol A � B to denote that A is a proper subset of B� this
is A � B and B nA �� ��


�



Proposition ��� Let F � L����� ��N �R� be unbiased and let x � ��� ��N be
�xed�

�� For almost all y � ��� ��N� the following holds� if

Fx � Fy�

then F is a set of trivial functions�


� For all y � ��� ��N� the following holds� if

Fx � Fy�

then
Fy � Fx���y�x� � Fx���y�x� � � � � �

�� If x and y � ��� ��N are rational in each coordinate� then

Fx 	� Fy�

Remark� If we take two samples x and y at random� and if we happen
to �nd Fx � Fy� then Part � states that almost certainly y is superior
to x only with respect to trivial functions� Part 
 states that whenever
such an inclusion occurs� we can construct a sequence �x ! n�y � x���n��
of samples where each element is better than its predecessor� in this case�
we cannot consider y as �good� because we can actually compute an in�nite
number of samples which are �better�� For computer simulations� Part � is
the most interesting one� It states that for those sequences x� y of random
numbers which can be represented in a computer�s �nite�precision �oating�
point arithmetic� an inclusion of Fx in Fy cannot occur at all� As a corollary�
this renders Criterion 
�
 useless whenever F is unbiased�
The Parts 
 and � are easy to prove� but Part � is not� To prove it� we

use the bijection $ from Fx onto Fy as constructed in the proof of Proposi�
tion ���� each F � Fx is translated to F �Tx�y� which is an element of Fy�
We show that this translation of functions in F corresponds to the transla�
tion of some measurable subsets of ��� ��N � The notion of ergodicity applied
to these subsets is the key to Part �� Recall the de�nition of ergodicity��

�For more than just the de�nition of this very interesting notion� we refer the reader
to Parry ����� Petersen ����� or Walters ������

��



De�nition ��� A measure�preserving mapping T � ��� ��N�
 ��� ��N is
called ergodic if� for any A � B
���
N � the following implication holds�

T���A� � A �� �N�A� � f�� �g�

Besides the notion of ergodicity� we need four lemmata to prove Propo�
sition ��
� The �rst two are used to state that the translation Tc is ergodic
for almost all c� The third shows that the translation of functions in F
corresponds to the translation of certain measurable subsets of ��� ��N � The
fourth translates the concept of trivial functions to these measurable subsets�

Lemma ��� Let c � �cn�
N��
n�� � ��� ��N� Then Tc is ergodic if and only if

the numbers c�� � � � � cN��� and � are rationally independent�

We do not prove this result here� The interested reader might con�
sult Parry �
�� Chapter ��� Recall that the rational independence of
c�� � � � � cN��� � means that there are no integers h�� � � � � hN��� k satisfyingPN��

n�� hncn � k�

Lemma ��� The translation Tc is ergodic for almost all c � ��� ��N�

Proof� We show that

A �� fc � �cn�N��n�� � ��� ��N� c�� � � � � cN��� � are rationally dependent g
is a set of measure zero� The condition of rational dependence of the cn
and � can be read as �c lies on a hyperplane de�ned by the vector h and
the scalar k� where h is a nonzero N �dimensional integer vector and k is
an integer�� A is a subset of the union of all these hyperplanes� Since any
hyperplane has measure zero and since the set of the above hyperplanes is
countable� their union and its subset A have measure zero� too� �

Lemma ��� Let F � L����� ��N �R� be unbiased� Then there is a set G � F
with


x � ��� ��N 
F � G � �Cx�F � B
���
N
such that

��
Fx �

�
F�G

fF � Tc � c � Cx�F g �

��




� The sets in the above union are mutually disjoint�

��

x�y � ��� ��N 
F � G � Cy�F � Cx�F ! �x� y��

Proof� Let F be unbiased� We de�ne an equivalence relation � on F
as

F � G �� �c � ��� ��N � F � G � Tc�
It is easy to see that � is in fact an equivalence relation� it is re�exive since
there is a neutral element� the zero�vector in the group ���� ��N�!�� it is
symmetric since� for each c� there is an inverse element in the group� too�
�nally� it is transitive also because ���� ��N�!� is a group�
In the following argument� we de�ne G as a set of representatives� of F with
respect to �� and construct the sets Cx�F accordingly�
Since G is a set of representatives and since F is unbiased� we have

F �
�
F�G

n
F � Tc � c � ��� ��N

o
�

and this union is taken over disjoint sets� Now we represent the set Fx in a
similar form�

Fx � fF � F � #x�F � � �g
�

�
F�G

n
F � Tc � c � ��� ��N � #x�F � Tc� � �

o

�
�
F�G

n
F � Tc � c �

n
c � ��� ��N� #x�F � Tc� � �

oo
�

As above� the union is taken over disjoint sets� We de�ne the sets Cx�F as

Cx�F ��
n
c � ��� ��N� #x�F � Tc� � �

o
� ���

which are measurable because F is measurable itself� With this� the Parts �
and 
 are proved�

For Part �� recall the mapping $ we used in the proof of Proposition ����
$ is a bijective function from Fx to Fy� which maps F to F � Tx�y � Let
F � G� On one hand� we have

Fy �
�
F�G

	
F � Tc � c � Cy�F



�

�Which does exist if we assume the Axiom of Choice�

�




and on the other� since $ is bijective�

Fy � $�Fx�
�

�
F�G

$ �fF � Tc � c � Cx�F g�

�
�
F�G

	
F � Tc� � c� � Cx�F ! �x� y�



�

Because the sets Cx�F and Cy�F are uniquely determined by ���� we have

Cy�F � Cx�F ! �x� y��

�

Lemma ��� Let F � L����� ��N�R� be unbiased and let the sets G�Cz�F
�z � ��� ��N� F � G� be de�ned as in Lemma ����
If

�x � ��� ��N 
F � G � �N�Cx�F � � f�� �g� �
�

then F is a set of trivial functions�

Proof� Let F � L����� ��N�R� be unbiased� let x � ��� ��N� and sup�
pose �
� holds for the given x� It is su�cient to show that G is a set of
trivial functions because G is a set of representatives of F with respect to
the translations Tc and because� if F � G is trivial� each F � Tc is trivial�
too�

Let F � G� Due to ��� we have

Cx�F �
n
c � ��� ��N� #x�F � Tc� � �

o
�

n
c � ��� ��N� #x�c�F � � �

o
�

n
c� � x � ��� ��N � #c��F � � �

o
�

n
c� � ��� ��N � #c��F � � �

o
� x

�� A� x�

Since �N�Cx�F � � f�� �g and since �N is invariant under translation� we get
that �N�A� � f�� �g and that F is trivial� �

Now we are ready to prove Proposition ��
� We show Part � to � in
reverse order because the argument runs smoother this way�

��



Proof of Proposition ���� Let F � L����� ��N�R� be unbiased�
x � ��� ��N � and let G and the setsCz�F �z � ��� ��N � F � G� as in Lemma ����
For a �xed y � ��� ��N � let $ � Fx 
 Fy be de�ned as in the proof of
Proposition ���� F is mapped to $�F � � F � Tx�y � Finally� let y � ��� ��N
such that

Fx � Fy� ���

For Part �� let both x and y be rational in each coordinate� Then the
same holds for c �� x � y� Let � � ��� � � � � �� be the zero�vector in ��� ��N �
Since c is rational� there is an integer n � � such that nc � � in the abelian
group ���� ��N �!�� For F � G� ��� and ��� imply� that Cx�F � Cy�F �
Because of Lemma ���� Part �� for any F � G� we have

Cx�F � Cy�F � Cx�F ! c

� Cx�F ! 
c

���

� Cx�F ! nc � Cx�F �

With Lemma ���� this yields Fx � Fy� which is a contradiction to ����
Hence ��� cannot hold whenever x and y are rational in each coordinate�
This proves Part ��

To show Part 
� note that $�Fx� � Fy� so ��� can be written as

Fx � $�Fx� � Fx��y�x��

Inductively� this yields

Fx�n�y�x� � Fx��n����y�x�
for any integer n � � and proves Part 
�
To prove Part �� let y � ��� ��N such that Tx�y is ergodic� Observe that

this holds for almost all y	� With Lemma ���� it is su�cient to show that�

�If we can choose c � Cx�F nCy�F � then ��� gives �x�F �Tc� � � and �y�F �Tc� � ��
But this means F � Tc � Fx n Fy� which is a contradiction to ����

�Due to Lemma ���� Ty is ergodic for almost all y � ��� ��N � Since the translation
Tx��y is measure�preserving� the mapping

Tx�y � Ty � Tx��y

is ergodic for almost all y� too�

��



for any F � G� the measure �N�Cx�F � is either � or ��
Because of ��� and ���� the following relations between Cx�F and Cy�F are
possible
 �

Cx�F � Cy�F

or
Cx�F � Cy�F �

In the �rst case� Cx�F � Cy�F � Lemma ���� Part � yields

Cx�F � Cy�F � Cx�F ! �x� y�

or� equivalently�
Cx�F � T��x�y �Cx�F � �

Since Tx�y is ergodic� �N�Cx�F � is either � or ��
In the second case� Cx�F � Cy�F � the already proven Part 
 of this propo�
sition yields that� for c �� x� y� we have


n � � � Cx�F ! nc � Cx�F ! �n! ��c�

Because �N is invariant under translation� the measure of each Cx�F ! nc

is equal to �N �Cx�F �� Now we de�ne

C ��
��
n��

�Cx�F ! nc� �

Then� because the measure �N is �nite and therefore continuous from
below�� we have

�N�C� � �N�Cx�F ��

Since Cx�F ! nc � Cx�F ! �n! ��c� we have C � ��n���Cx�F ! nc�� Hence

C! c � C

or� equivalently�
T��c �C� � C�

Since Tc is ergodic� the measure �N�C� � �N�Cx�F � is either � or �� �

The failure of Criterion 
�� when F is unbiased is stated in

As we have seen in the proof of Part �� the case Cx�F nCy�F �� � is impossible�
�A measure � is continuous from below if� for arbitrary measurable sets An and A with

	�n��An � A� the relation limn����	
n
i��An� � ��A� holds�

��



Proposition ��� Let F � L����� ��N�R� be unbiased� Then


x�y � ��� ��N � sup
F
#x � sup

F
#y �

Proof� Let F � L����� ��N�R� be unbiased and let x�y � ��� ��N �
Recall the bijective mapping

$ � Fx �
 Fy
F ��
 F � Tx�y

we used in the proof of Proposition ���� By the same argument as used to
show that $ is well�de�ned� we get

#x�F � � #y�F � Tx�y��
which� because of the bijectivity of $� completes the proof� �

��� A critical remark

������� Note that the condition of unbiasedness we demanded for F is quite
restrictive� We could make use of Criterion 
��� 
�
� and 
�� by consider�
ing sets F which are not unbiased �for an example of this� see our remark
concerning Criterion 
�� in �
�������

Anyway� all we wanted to say was that� in general� no �nite sample can
be considered more random than any other �see ��������� With the example
of unbiased sets F � and in particular since L����� ��N�R� is unbiased� this is
shown�

Moreover� searching for good general�purpose random number sequences
to run stochastic simulations on computers� one almost invariably stumbles
over unbiased sets F � Think of a user who wants to simulate Y � a �your�
simulation�problem�here� on a computer� In particular� if Y is a complex
quantity� there are numerous possible estimator for E�Y �� and each of them
can be implemented on a computer in numerous di�erent ways� The user
does not want a separate random number sequence for each individual es�
timator F � but one which performs well for all F �� Although additional

�Using the same sequence with di�erent estimators is quite useful for debugging the
code and comparing the estimators�

��



knowledge about the relevant estimators may be available� the information
which actually reaches the mathematician is often no more than that �one
searches for a sequence well suited for simulating Y �� In this case� the cor�
responding set F is

F � fF � L����� ��N �R� � E�F � � E�Y �g

which is� of course� unbiased�

As already hinted in �
����� and as we will see in the next chapter� the
use of a probability space over F provides us with a quite handy tool for
making justi�ed proposals of which sequence to use�

��



Chapter �

Getting a �good one�

With a bit of a mind �ip
� Ri� Ra�� The Rocky Horror Picture Show

�����
� We have seen that it is impossible to attribute a special status
of randomness to any �xed sequence x � �xn�

N��
n�� of N numbers in general�

On the other hand� we are looking for good random numbers for computer
simulation� Such numbers can be found only if some information about the
simulation problem is available� We have presented Criterion 
�� and 
��
to take such information into account� Criterion 
�� de�nes good sequences
with respect to a restricted set� of simulations F � For practical applications�
the problem with restricted sets F is twofold�
First� those F � for which the quality of a sequence x with respect to Crite�
rion 
�� can actually be proven� are comprised of rather primitive simulation
problems �see �
������� Most of the interesting problems �think of� say� dis�
crete event simulations� are of a more complex nature� In principle� it might
be possible to �nd good sequences for more complex F � unfortunately there
are many technical di�culties on the way� which are very hard to surmount
even for rather primitive F �
Second� even if we can prove the quality of a sequence x with respect to
Criterion 
�� and F � the question of whether a given simulation problem
actually belongs to F or not is mostly a matter of guessing��

�To those who have read Chapter �� with problem sets F which are biased� Criterion ���
and ��� will also work�

�Think of� say� the problem set F described in �������� for which the �t�m�s��nets are

�




In this chapter� we will apply Criterion 
�� in some common situations�
To apply this criterion� we need some information about the simulation
problem just as in the application of Criterion 
��� The advantage of Crite�
rion 
�� is that it requires much less information and that the assumptions
on the simulation problem are less restrictive and mostly intuitively con�
vincing� But nothing comes for free� of course� The assessments of quality
based on Criterion 
�� are much weaker than those based on Criterion 
���
Whereas the latter proposes sequences which are good �with certainty�� the
proposals based on the former are good only �in the mean��
We present four examples of applying Criterion 
��� The aim is not to �nd
completely new arguments for a sequence�s quality� but to use existing ar�
guments found in the literature� and to point out under which assumptions
they are reasonable� You may view these examples as plug�ins� saying�

If the user can supply us with this�or�that information about
his simulation problem� then we advise him to use this�or�that
sequence�

The point is that the advice can actually be derived from the given infor�
mation� Thus the above if�then�argument should better read�

If the user is willing to make this�or�that assumption about his
simulation problem� then these assumptions imply the preference
of this�or�that sequence�

��� Pre�testing

������� A sequence x is often believed to be good if it behaves well in certain
statistical tests� We have already encountered this attitude in �
�
���� If a
sequence passes� say� ten statistical tests� you cannot be sure it will be a good
choice for your simulation� but usually the ten tests it passed will increase
your con�dence in the sequence�

Suppose a user wants to simulate the �ow of aerosol particles in the hu�
man lung� More precisely� he is interested in how particles are deposited in

proven to be good� F is made up of functions F � ��N
PN

n��
f � where f is a function

with in some sense rapidly decreasing Walsh coe�cients� The rate of decrease of a given
function
s Walsh coe�cients is not easy to estimate let alone to compute�

��



bronchial airway bifurcations� The model is roughly described as follows��
The positions of a number of particles are randomly selected at the inlet
of the bifurcation� The number of particles is chosen large enough so that
the resulting deposition patterns can be considered signi�cant� Each par�
ticle enters the bifurcation at the selected position in a stream of inhaled
air� Its trajectory within the bifurcation is governed by the rules of intertial
impaction� interception� gravitational setting� and Brownian motion� The
particle either leaves the bifurcation at one of its outlets or is deposited
somewhere within� This model is used with varying bifurcation geometries�
varying �ow pro�les at the inlet boundary� and varying particle sizes�
Note that this is a stochastic model� Apart from randomly selecting parti�
cle positions at the inlet� the particle trajectories have a stochastic element�
The �rst three rules governing each trajectory are obeyed by solving the
corresponding di�erential equations numerically� To obey the fourth rule
in a computer simulation� random numbers are used� The Brownian mo�
tion of a particle is modeled by incrementally changing its position by some
three�dimensional random vector % after a �xed time interval� Independent
realizations ��� ��� � � � of the random vector % are obtained from a sequence
x of random numbers and an algorithm to compute the �n given x�
Now think of a statistical test which checks if the ��� ��� � � � behave as in�
dependent realizations of % should� i�e� a test whether the realizations are
correctly distributed� Learning x behaves well in this test might well increase
the user�s con�dence in the sequence�

We will see that this increase of con�dence is not only convincing on
an intuitive basis� but can in fact be derived using Criterion 
�� from a
moderate assumption about the test�s relevance for the simulation�

�����
� Let G be a set of simulations� let H be a set of statistical tests
with level of signi�cance � �� � � � ��
�� let F �� G �H� and let �F �R� ��
be a probability space�

To �x ideas� think of G being the set of all simulations of a model of
particle��ow in bronchial bifurcations with varying bifurcation geometries�
�ow pro�les� and particle sizes� Or think of G containing many di�erent
models for the particle��ow� all of which are mathematical images of the
same real�world phenomenon� The set H might be thought of containing
all statistical tests based on the random jumps ��� ��� � � � computed from a

�For a more complete description of the model and various simulation results� see
Bal ash azy and Hofmann ����
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sequence of random numbers or just one statistical test with di�erent sample
sizes� di�erent levels of signi�cance� and so on�

For a pair �F� T � � F and a sequence x�
#x�F � �� jF �x��E�F �j

measures the quality of x in simulating F and

$x�T � �� jT �x�� E�T �j
measures the behavior of x in the test T �� Additionally� we assume that
the 	�algebra R on F is such that these quantities are real�valued random
variables �We have already encountered this setup in �
�������
It is of course not easy to describe the mathematical object �F �R� �� explic�
itly� especially for a user who just wants to simulate the �ow of particles in
the bronchiae� Fortunately� we do not need a complete� explicit description
but just one property of ��

Suppose the user assumes that the random quantities #x and $x are
positively correlated� The positive correlation can be thought of expressing
that the tests in H check for certain properties which are relevant for the
simulations in G� We have the following result�

Whenever the positive correlation of #x and $x holds� we have

E��#xj$x � ��
� � E��#x� � E��#xj$x � ��
��

Thus� if x passes a test randomly selected from H� the user has to be more
optimistic about the error x is expected to produce in simulating a problem
randomly selected from G�

Proof� Recall that the positive correlation of #x and $x means that
their covariance is positive�

E��#x$x��E��#x�E��$x� � �� ���

Now let &x be the event of x passing a test from H�

&x�T � ��

�
� if $x�T � � ��
�
� otherwise

�
�� �� $x�T �

�� 
� � �
�

�Recall our observation from �������� if T is a test with level of signi�cance � � ����
then x passes the test if and only if �x�T � � ����
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To verify �
�� recall that $x�T � � � � ��
 if and only if T �x� � ��

Since #x is positively correlated to $x� it is negatively correlated to &x�
To derive this formally� simply use �
� to express $x by means of &x� and
substitute this in ���� this yields

E��#x&x��E��#x�E��&x� � ��

This is in fact equivalent to the positive correlation of #x and $x since &x
was obtained from $x by a linear transformation�
Next� observe that for the above negative correlation to hold� the terms
E��#x� and E��&x� both must be positive

�� With this� we can transform
the above equation to

E��#x&x�

E��#x�E��&x�
� �� ���

Now we have

E��#x&x� � E��#x&xj&x � ��P��&x � �� !
E��#x&xj&x � ��P��&x � ��

� E��#xj&x � ��P��&x � ��� ���

Employing the fact that E��&x� � P��&x � ��� we can substitute ���
in ��� to get

E��#xj&x � ��
E��#x�

� �

which is equivalent to

E��#xj&x � �� � E��#x��

The proof of the second inequality is analogous� now with the auxiliary
event &x �� � if x fails the test and � otherwise� �

������� A similar argument can be applied to choose between two se�
quences x and y when the user cannot decide which one he should prefer�
If he considers the quantities #z and $z as negatively correlated for any
sequence z� we advise him to use that sequence which passes the test �if one

�All involved random variables are nonnegative and� therefore� their expectations are
also nonnegative� Hence E��!x� and E���x� must both be positive� since otherwise the
inequality of negative correlation cannot hold�

�




of them fails��
This is because his indi�erence about which sequence to use means

E��#x� � E��#y��

Assuming that y fails the test and x passes it� we get

E� �#xj$x � ��
� � E�

�
#yj$y � ��




�

Moreover� even if the test is evaluated only for one of the samples� a reason�
able decision is possible� If� say� we only know that #x � ��
� we get

E� �#xj$x � ��
� � E��#y��

������� There is of course no need to restrict the pre	testing to sets
H of statistical tests only� any set of functions whose evaluation amounts
to answering a yes�no question� functions which assume only two possible
values� can be used� If� say� H is a set of functions T which can only take
the values T �x� � � or T �x� � � �where T �x� � � is interpreted as x passing
the �test� T � and if positive correlation between the corresponding random
variables #x and $x is assumend� then pre	testing is applicable�

������� So this is the justi�cation for applying statistical tests to random
number sequences�

If the user considers a test as relevant for his simulation� his
con�dence in a sequence necessarily increases if it passes the
test�

This argument is especially useful since we can apply a battery of statistical
tests to a sequence before the user actually starts looking for a good one�
The selection of these tests is of course more or less arbitrary� but this does
not matter as long as the user can �nd a test which checks for a property
he considers relevant�

The �rst simple tests for random numbers were designed �in the early
days of making tables of random digits� �
�� p��� in the work of Kendall and
Babington�Smith ��
�� These and a few more tests suggested by MacLaren
and Marsaglia in ���� were compiled in Knuth�s ���� Section ����� An appli�
cation of �slightly modi�ed� tests from Knuth�s battery to speci�c sequences
was performed by L�Ecuyer in ��
��

��



Marsaglia �
�� designed a battery of what he calls �stringent tests� be�
cause they seem more di�cult to pass than the mild tests that have become
standard�� He gives a description of his tests and the results of applying
them to various random number sequences�

The most extensively applied test battery is due to Fishman and
Moore ��
�� In addition to presenting individual tests� they also present
an �omnibus test� which is the conjunction of the individual tests� In �����
they apply their tests to a whole class of random number generators� out
of over ��� million candidate generators� they select the ��� �best� with re�
spect to some reasonable criterion	� subject them to their tests� and present
the results and the �ve best generators� The same procedure is applied by
Fishman in ���� to the whole of another class of random number generators
and to parts of yet a third�

������� However� the utility of test batteries is restricted by the re�
quirement that the tests must check for properties which the user considers
relevant for his simulation� If he cannot �nd a test which checks for relevant
properties� probably the best advice for using the argument presented in
this section is given by Marsaglia �
�� p���� �If the RNG �random number
generator� is to be used for a particular problem� one should try to create a
test based on a similar problem for which the underlying distributions are
known � � ��� With the considerations of �������� we add that any test will
do� statistical or not� if only it is relevant�

��� Employing known defects

���
��� By a defect of a sequence x� we understand a simulation problem F
which x approximates �very badly�� In our terminology� this is to say that

#x�F � � �

for some error bound � determining the defect�s severeness�

�Their selection is based on a normalized version c�	s of the spectral test ��	s� We
introduce the spectral test informally in ������� and formally in Section B��� c depends
on the generator and the tested dimension such that results of di�erent generators are
comparable�
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We have already seen that any two samples x and y are �good� in ap�
proximating about the same number of simulation problems
� It is clear
that the same holds for the number of simulation problems in which x and
y are �bad��� Thus�

Any sample is as defective as any other�

We know x � ��� �� �� �� �� �� �� �� �� �� �� �� and y � ��� �� �� �� �� �� ��
�� �� �� �� �� have the same number of defects� so 	 in general 	 x is �as good
as� y� However� if we are going to simulate the average number of �heads�
in �
 tosses of a fair coin �taking � as �head� and � as �tail��� we will tend to
prefer y�
Although this preference for y is quite obvious� it exempli�es one thing�
the crucial point about a sequence�s defects is not their presence but their
relevance for the simulation problem at hand� The more we know about the
defects of x� the better we can decide for which simulations x should not
be used� If no defect of x is explicitly known� we may 	 simulating a given
problem F 	 stumble right over one of its worst de�ciencies� In this sense�
a sound knowledge of the defects of x holds in favor of the sequence�

���
�
� Concerning known defects� the study of deterministic sequences
of random numbers� produced by so�called random number generators�� can
be very valuable� In such a sequence x � �xn�

N��
n�� � each number xn is

obtained by an explicit computational rule which 	 for virtually all random
number generators in use today 	 is some sort of recursion� say�

x� �� ��

xn �� f�xn��� �� � i � N��


We saw this with respect to statistical tests and �nite binary sequences in Chapter �
and with respect to arbitrary unbiased test sets and �nite sequences in ��� �� in Chapter ��

�To those who have read Chapter �� for a problem set F � those functions in which a
sample x is defective with respect to � form just the set F n Fx� Since the sets Fx and
Fy are �of the same size
 for almost all x and y whenever F is unbiased and non�trivial�
�Proposition ��� and ����� the same holds for their complements�

�If the �nite sequence x is generated by a deterministic algorithm� some authors refer
to x as a sequence of pseudo�random numbers and to the algorithm as a pseudo�random
number generator� In accordance with De�nition ���� and because we have seen that there
is no probabilistic way to separate the �nite sequences of �truly
�random numbers from
those of pseudo�random numbers� we omit the adjective �pseudo
 in this text� Any �nite
sequence x of numbers is a sequence of random numbers if it is used as a substitute for
random variables in a simulation� If x is generated by a deterministic algorithm� we refer
to this algorithm as a random number generator�
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The output x of a random number generator has one important advan�
tage over a nondeterministic y� x is completely determined by f and x��
any defect of x can 	 in principle 	 be derived from f and x�� On the other
hand� the defects of y depend on all the y�� � � � � yN��� if there is no mathe�
matical structure in the numbers yn� its defects cannot be derived but just
observed��� As Knuth notes in ���� p����� �Although it is always possible to
test a random number generator using the �statistical� methods in the pre�
vious section� it is far better to have �a priori tests�� i�e�� theoretical results
that tell us in advance how well those tests will come out� Such theoreti�
cal results give us much more understanding about the generation methods
than empirical� �trial�and�error� results do��

Although it is not always easy to infer structural de�ciencies of a random
number generator�s output from its algorithm� it can be done in some cases�

For some random number generators� we are able to prove they
are defective for a whole class of simulation problems� so we know
in advance that they will fail the corresponding tests�
Conversely� for some other random number generators� we are
able to prove that they are not defective for a whole class of
problems� they are known in advance to pass the corresponding
tests�

In the rest of this section� we describe these generators and their defects
along with how they can be used in conjunction with Criterion 
��� For the
sake of simplicity� this section is rather informal� focusing on the defects�
consequences rather than on their cause� The precise and formal treatise is
postponed to Chapter ��

���
��� Today� the most widely used generator is in fact the one with

��There is yet another important advantage of using a random number generator to
produce x� Since its output is repeatable� so is the computed simulation result F �x��
The ability to obtain reproducible results is appreciated in scienti�c work in general and
in computing in particular� as noted by Ripley in ���� p������ 	For example� Ripley and
Kirkland ���� �� � �� show some summaries of the simulation of a Markov random �eld
which show an abrupt change at one point in the supposedly converging iterative process�
Because a repeatable sequence was used� the process could be run up to just before that
point and stopped� so the critical phase could be examined in detail�
 A similar statement
is given by Halton in ��"� p���� Without the ability to repeat the sequence x� one is
unable to decide whether a given simulation result F �x� is valid or simply due to some
programming error�
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the apparently most serious defect� the linear congruential generator�� and
its lattice structure�
A linear congruential generator �LCG� for short� with integer parameters
M� a� b� and y� computes its values by the recursion

x� ��
y�
M

�

xn �� axn�� !
b

M
�mod �� �� � n � N��

where the period N of the generator depends on M � a� and b� We refer the
reader to De�nition ��� for an exact de�nition and to ���
�
� for conditions
to achieve maximal period length�

As can be seen from the de�nition of the xn� the LCG�s recursion is
de�ned by a straight line which is wrapped around the unit square by the
modulo�operation� for an LCG with M � ��� a � �� and b � 
�� the
recursion f has the following form���

1
0

1

Figure �

If we plot the points �x�� x��� �x�� x��� � � � � �xN��� xN���� �xN��� x�� pro�
duced by this LCG� they lie on this wrapped line�

��See ������� for who proposed this generator�
��If we used another LCG with larger values ofM or a� the basic appearance of f would

be the same but it would have signi�cantly more �and maybe steeper� linear branches
which are hard to plot�
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Linear patterns like this were known for quite a time�� without being rec�
ognized as an inherent �aw of this kind of generator� Even eighteen years
after the �rst proposal of the LCG� Chambers ���� argued� �With �linear
congruential� generators having su�ciently long periods such patterns are
no longer evident����

The �rst proof that linear patterns are inherent to the LCG was given
by Marsaglia ��
� in ���
�

�if n�tuples �u�� u�� � � � � un�� �u�� u�� � � � � un���� � � � of uniform
variates produced by the �linear congruential� generator are
viewed as points in the unit cube of n dimensions� then all the
points will be found to lie in a relatively small number of parallel
hyperplanes��

This structure of overlapping tuples�� occurs with any LCG in any dimen�
sion� Moreover� the points do not only fall into quite a few parallel hy�
perplanes� but also exhibit a regular behavior within these� As Beyer et
al� ��� and Smith ����� showed in ����� the s�dimensional points produced
by an LCG form a �shifted� lattice�	 in ��� ��s �Intermediate cases� where the
points are merely contained in a �shifted� lattice� or form or are contained

��See� for example� Greenberger ���� ����
��There is of course reason in Chambers
 observation� If the period is large and if we

plot only a small fraction of all the points� then indeed the linear patterns are no longer
evident� see Figure �b�

��See also Marsaglias papers �"�� ���
��See Figure � to take a look at the lattice for s � ��
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in the union of several �shifted� lattices exist� see ��� Section ����� Handling
these intermediate cases would add some technical di�culties but not more
clarity� Therefore� we only consider the standard case of points forming a
�shifted� lattice in ��� ��s��

Without going into detail� it is clear that this is de�nitely not the ex�
pected behavior of the random variables which the LCG should approximate�
Thus� let T be any test which checks a sequence z of random numbers for
the presence of lattice or hyperplane structures in some dimension s � ��
We know than any x produced by an LCG will fail T � If the user considers
T as relevant for his simulation problem� Criterion 
�� can be applied just
as in Section ���� yielding the result that x should not be used�

���
��� The lattice structure of the LCG enables us not only to avoid
it in certain circumstances but also to select a �good� LCG� i�e� parameters
M � a� and b such that the corresponding LCG is �better� than others� If you
look at the lattice produced by the following two LCG�
�
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Figure �a Figure �b

you are likely to prefer the second generator� Both of them produce a regular
pattern� but the �rst generator seems to be much worse�

Marsaglia�s work in ���
 ��
� has triggered a series of papers on how
to describe the LCG�s lattice in higher dimension� Several �gures of merit

�
Figure �a was produced by an LCG with M � ����� a � ����� and b � ��� Figure �b
was produced by an LCG with the same parameters except for a� which was set to ��"�
The points in Figure �a are packed so closely on just four line�segments that they cannot
be perceived as individual points any more�
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have been developed to facilitate �nding an LCG whose points fall on more
parallel hyperplanes� whose parallel hyperplanes are packed more closely� or
whose lattice�s unit cell is more cube�like� Considering the generators shown
in Figure �� think of a �not necessarily statistical� test T which �rejects� a
sample z if the two dimensional points of z are covered by �� or less parallel
lines and �accepts� z otherwise� If we consider T as relevant for whatever
problem we are going to simulate� we have reason to prefer the generator in
Figure �b to the one in Figure �a�
To consider a test T as �relevant�� one has to understand the defects T
can detect and the properties of randomness T tests for� The better these
properties are understood� the better one can judge whether or not they are
relevant for a given simulation problem� The following �gures of merit are
quite easy to understand�

� The maximal distance ��
s of parallel hyperplanes which cover the
LCG�s lattice in Rs� this is called the spectral test�
One interpretation of this is quite obvious� the larger ��
s� the further
are the LCG�s hyperplanes apart� and so the larger is the parallelepiped
in ��� ��s which is never hit by one of the points� If the simulation F �x�
depends on the distribution of the s�dimensional points produced by
the sequence x and if the LCG x has a large value of ��
s� then
F �x� will ignore large areas of ��� ��s� If those areas happen to be
important for F � the simulation F �x� will ignore important aspects of
the simulation problem F �
A quite but not entirely unlike interpretation is given by Knuth in ����
p����� �If we take truly random numbers between � and �� and round
or truncate them to �nite accuracy so that each is an integer multiple
of ��
 for some given number 
� then the t�dimensional points �� � �� we
obtain will have an extremely regular character when viewed through
a microscope� �� � �� We shall call 
� the two�dimensional accuracy of
the random number generator� since the pairs of successive numbers
have a �ne structure that is essentially good to one part in 
���
See ���
��� and Section B�� for a formal speci�cation of ��
s and for
how to compute this quantity�

It is interesting to note that Coveyou and MacPherson introduced the
spectral test in ���� ���� without actually employing the s�dimensional
lattice structure� �Instead of working with the grid structure of suc�
cessive points� they considered random number generators as sources
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of t�dimensional �waves�� The �inverse of the distance of parallel adja�
cent hyperplanes covering the lattice� �� � �� in their original treatment
were the wave �frequencies�� or points in the �spectrum� de�ned by the
random number generator� with low�frequency waves being the most
damaging to randomness� hence the name spectral test� �from ����
p���������
The approach of Coveyou and MacPherson suggests that the spectral
test might be used as a general �gure of merit for rating sequences of
random numbers� But when the sequence x has no lattice structure�
Niederreiter observes in �
�� p���
� that the �di�culty here is to �nd
a convincing quantitative formulation of this idea�� An alternative ap�
proach which conserves the basic concept of Coveyou and MacPherson
and which is applicable for any sequence x is presented by Hellekalek
in ����� the diaphony �due to Zinterhof ������ see also the correspond�
ing footnote on page �
� can be viewed as a weighted spectral test�
While the spectral test computes the lowest wave frequency� the di�
aphony computes a weighted sum of all wave frequencies where lower
frequencies are more emphasized�

� The relation qs of the shortest to the longest edge of the unit cell of
the lattice in ��� ��s� called the Beyer�quotient�
Due to Beyer ���� the Beyer�quotient gives a good description of the
unit cell of the lattice� If we look at Figure �� we tend to prefer the
generator for which q� is closer to ��
One interpretation of qs is given by L�Ecuyer in ���� p����� �A unit
cell of the lattice is determined by the vectors of a Minkowski�reduced
lattice base �MRLB� �� � ��� It is traditionally accepted that �better�
generators are obtained when the unit cells of the lattice are more
�cubic�like� �i�e� when the vectors of the MRLB have about the same
size�� The ratio qt of the sizes of the shortest and the longest vectors
of a MRLB is called the Beyer�quotient��
Another interpretation can be derived from Knuth�s concept of s�
dimensional accuracy� Suppose we take �truly random� points in ��� ��s

and represent them with coordinates relative to the MRLB� If we round
or truncate each coordinate to an integer value �performing some wrap�
around at the unit cube�s boundaries�� the resulting rounded points

��This �indirect
 introduction of ��	s is probably one of the reasons why this quantity
was misunderstood for quite a long time� See� for example� ��� p��"�� for an unquotable
statement on the spectral test�
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will lie just on the lattice spanned by the MRLB� A Beyer�quotient qs
close to � means that we loose about the same amount of accuracy in
each coordinate� while a small value of qs means that one coordinate
looses signi�cantly more accuracy than some other�
We refer to ���
��� and Section B�
 for a more complete treatise of
qs and Minkowski�reduced lattice bases and for how to compute these
numerical quantities�

Some more �gures of merit describing the s�dimensional lattice of an LCG
have been proposed� but we do not present them here since we could not
�nd reasonable interpretations by which the user can judge their relevance
for his simulation problem� We refer the interested reader to �

�� ��
�� ����
�
��� or ��
��

���
��� Whenever lattice tests or tests for the presence of hyperplane
structures are considered relevant� we can not only advise the user not to
use an LCG but also which kind of generator to use instead� an inversive
generator� In fact� there are two kinds of inversive generators� the inversive
congruential generator �ICG� and the explicit inversive congruential gener�
ator �EICG��

The ICG� proposed in ��
� by Eichenauer and Lehn ����� computes its
numbers by means of a recursion just as the LCG� but its recursion is based
on a nonlinear function� For a prime number p and suitable integer param�
eters a� b� and y�� the ICG computes the sequence x � �xn�

p��
n�� as

x� ��
y�
p
�

xn �� f�p� a� b� xn��� �� � n � p��

where f�p� a� b� x� is a �highly� nonlinear function in x� We give a more
complete description of the ICG in Section ����
The EICG� proposed in ���� by Eichenauer�Hermann ����� uses no recursion
but� given the desired index n� facilitates the explicit computation of xn�
Just as the ICG� it uses a prime number p and integer parameters a� b� and
n� to compute x � �xn�

p��
n�� as

xn �� g�p� a� b� n�� n� �� � n � p��

A more complete description of this generator can be found in Section ����
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The output of inversive generators has a property which renders them
the alternative to the LCG whenever hyperplane defects are considered
relevant���

The s�dimensional points produced by an inversive generator
avoid the hyperplanes in Rs�

So with respect to hyperplane structures� inversive generators behave exactly
as random variables are expected to�
Since points avoiding the hyperplanes cannot form a lattice� the ICG and
the EICG are proven to pass exactly those tests which the LCG fails"

���
��� Considering the undesirable lattice structure of the LCG and the
lack of this structure in inversive generators� one might argue as Marsaglia
does in ��� p�
���� �The conclusion is that �linear� congruential random
number generators are not suitable for precision Monte Carlo use�� This
statement is not completely valid� Of course� inversive generators perform
better than the LCG 	 if lattice or hyperplane structures are concerned�
Without this �if�� there is no reason to reject the LCG� Knuth warns in ����
p���� not to overestimate the LCG�s lattice structure� �At �rst glance we
might think that such a systematic behavior is so nonrandom as to make
�linear� congruential generators quite worthless� but more careful re�ection�
remembering that �the period� m is quite large in practice� provides a better
insight�� If a simulation problem consumes only a small fraction of a gen�
erator�s output using too few points for the LCG�s lattice to show up� it is
rather hard to judge if an LCG or an inversive generator should be used���

��For a precise statement of this result� see ������� for the ICG and ������� for the EICG�
��Figure �a is a plot of the points f�xn� xn	�� � � � i � ����g obtained from the EICG

with M � ��� 
 �� a � �� b � �� and y� � �� Figure �b is a plot of the same set of points
obtained from the LCG with M � ��� 
 �� a � "��������� b � �� and y� � �� which
Fishman and Moore analyzed in �����
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Even in their �rst proposal of the ICG in ���� p��

�� Eichenauer and Lehn
stress that �one cannot recommend the application of nonlinear congruential
generators �� � �� instead of linear congruential generators �� � �� in general� But
they should be applied if one has the feeling that there is something wrong
with the simulation results and one suspects that this is caused by the lattice
structure of the linear congruential generator�� Careful examination of the
simulation problem is necessary to judge whether a lattice structure can be
considered relevant or not�

There are simulation problems whose examination does in fact indicate
that lattice structures might be highly relevant� Ripley ��
� considers the
minimal distance of k independent points in ��� ���� If such points are simu�
lated by an LCG� they lie on a regular lattice� The shortest possible distance
of two lattice points is just the length jjmjj of the shortest side of the lat�
tice�s unit cell� Although the minimal distance is expected to decrease as k
increases� an LCG�based simulation will never yield minimal distances be�
low jjmjj�
Simulations of this minimal distance� where an ICG scores signi�cantly bet�
ter than an LCG� were performed by Eichenauer and Lehn in ����� However�
these simulations have to be taken with a grain of salt� The involved gen�
erators have a very short period of less than ������� while most real�world
applications require period lengths of about at least 
��� Although it is� in
principle� possible to repeat the experiment in ���� for generators with larger
period lengths� sampling more points for the LCG�s lattice to show up� the
computational complexity of the test�statistic 	 which is O�sample size�� 	
hindered us from doing so� In short� we could not produce results as devas�
tating as those in ���� for LCGs with large period lengths�
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Simulations where inversive generators are found to be always at least as
good as and sometimes signi�cantly better than even the best LCG proposed
in ���� �whose period is 
�� � 
� have been performed by Entacher ���� ����
Leeb ���� ��� �
�� and Wegenkittl ���
��

���
��� A particularly serious defect common to many random number
generators is the presence of a special kind of long�range correlations� If
we use a sequence x � �xn�

N��
n�� to form the points �xn� xn�s� for a �xed

shift s� these points should be randomly scattered in the unit square� in
particular� the numbers xn and xn�s should be empirically uncorrelated

���
For a variety of generators� the converse is true�

For speci�c integers s called critical distances� the points
�xn� xn�s� concentrate on a few parallel lines in the unit square�

The presence of this kind of long�range correlation in a sequence r � �rn�
N��
n��

can be devastating in a simulation which uses more than s random numbers�
As De Matteis and Pagnutti note in �
�� p����� �In any case� the event
simulated by means of rn will be correlated with that simulated by rn�s for
every n and wherever one starts in the sequence� i�e� each event will keep a
memory of what happened s events before��

Just as the LCG�s lattice structure� this gives reason not to use gener�
ators which exhibit critical distances 	 if this defect is considered relevant�
Again� this �if� is important� De Matteis and Pagnutti remark on the long�
range correlations in �
�� p���� �How harmful this may be depends on the
particular application and also on the quantity of numbers required�� The
user is responsible to analyze his simulation problem and to evaluate the
relevance of the long�range correlation defect�

The �rst indication of this defect was noticed in the LCG in the early
���s by Coveyou ����� Greenberger ����� and Peach ����� It is interesting how
many years passed until it was analyzed to its full extent� Various long�range
correlations were of course observed since then �like� say� by De Matteis and
Faleschini ���� in ����� Dieter �
�� in ���
� Ahrens� Dieter and Grube �
�
in ����� Dieter and Ahrens �
�� in ����� Neuman and Merrick �
�� in �����
Neuman and Martin �

� in ����� Holmild and Rynefors ���� in ���
� and

��x is used to model the sequence X � �Xn�
N��
n�� of independent random variables� Since

Xn and Xn	s are stochastically independent� they are uncorrelated and so should be xn
and xn	s�
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Hill ���� in ������ but even in ��
� Bowman and Robinson ��� noticed the
defect merely by �Detailed examination of examples � � ��� Finally� in ��

�
De Matteis and Pagnutti proved the presence of critical distances in a class
of LCGs for speci�c values of s in ��
� �see also ������ a result which was gen�
eralized for arbitrary s in ��
� by Eichenauer�Hermann and Grothe in �����
One may suspect this defect to be a direct consequence of the simple lin�
ear recursion of the LCG and that using more complicated or nonlinear
recursions might be a remedy� Unfortunately� long�range correlations were
observed also in Tausworthe generators�� by Neuman and Martin in �

��
and the existence of critical distances s in Wichmann�Hill generators�� was
shown by De Matteis and Pagnutti in �
��� Moreover� in �
��� the above
authors gave a quite restrictive but nevertheless su�cient condition under
which any generator with a recursion of order one� be it linear or nonlinear�
has this defect�
We show the existence of critical distances in the LCG in ���
��� and for any
congruential generator forming a lattice in higher dimensions in Section B���

���
�
� For sequences which exhibit critical distances� these can be
used to select one whose long�range correlation between the n�th and the
�n!s��th number takes shape later� for larger values of s� To be speci�c� let
x � �xn�

N��
n�� and y � �yn�

N��
n�� be sequences which exhibit critical distances�

For some integer l� say� l � ����� we de�ne��

s��x� �� minfs � the �xn� xn�s� are covered by at most l parallel linesg

for x and s��y� as the analogous number for y �note that both sequences
are �nite so the minima are well�de�ned�� If we �nd s��x� � s��y�� we know
that the speci�c long�range correlation in x forms later than in y� If we
consider this concentration on at most l parallel lines as relevant� we can
apply Criterion 
�� to prefer x since it will pass a corresponding test which
y will fail�

���
��� If the user considers the mere presence of critical distances

��Proposed by Tausworthe in ������ see also ��"� Chapter ���
��The Wichmann�Hill generator� due to Wichmann and Hill ����� ����� computes its

numbers by combining the output of �usually� three LCG� This technique was supposed
to perturb the LCGs
 simple lattice structure�

��An algorithm for computing the quantity s� for LCGs with b � � is given by De Mat�
teis� Eichenauer�Hermann� and Grothe in ���� and for Wichmann�Hill generators �com�
posed of three LCGs whose additive constant b is zero� by De Matteis and Pagnutti in �����
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as relevant for his simulation problem��� he should use an EICG� For this
generator� the absence of critical distances s �except for the trivial one�
s � �� is proven by the following result�

The points �xn� xn�s� produced by an EICG avoid the lines in
the unit square�

This property� which is a consequence of Niederreiter�s �
�� Theorem ��� is
stated more properly in �������� A similar but slightly weaker result for the
ICG is given in ��������

���
���� All the random number generators presented so far yield� when
all their numbers are produced� a one�dimensional grid equal or similar to
f��N� � � � � N� ��Ng� sometimes including � �see ���
���� �����
�� and �����
�
for the exact form of this grid for the LCG� ICG� and EICG� respectively��
As with the lattice produced by the LCG� it is clear that producing such
excessive uniformity is not the behavior one would expect from random
variables�

If a user�s simulation problem will consume� say� k random numbers� and
if he considers excessive uniformity as a relevant defect� he has reason not
to use a generator whose period N is close to k �if the generator exhibits
excessive uniformity��

It is not easy to assess which fraction of a generator�s period N can be
used without risking excessive uniformity� A common advice is to use no
more than

p
N of a total of N random numbers� but as MacLaren objects

in ���� p����� �This rule appears to be passed primarily by word of mouth�
because nobody seems to know either where it originated or a reliable ref�
erence to its reason��
MacLaren observes excessive uniformity in a number of generators in simu�
lating a certain quantity when using more than N��� numbers� However� he
is cautious not to recommend this fraction as a de�nite safety limit� �This
does not mean that all analyses will start to give incorrect results at that
point� but that at least some will do so�� Besides the fractions

p
N andN����

using no more than N���� is suggested by De'ak in �

� p������ N����� by
De Matteis and Pagnutti in ��
� p������ and an argument for using no more
than

p
N�
�� is given by Ripley in ���� p�
���

��As he may� for example� in certain forms of stochastic simulation on parallel computers�
see ���� and �����

��



Although we do not feel able to favor one of these fractions� we can con�
clude that a generator with large period length might be preferred to another
whose period is signi�cantly shorter if the user expects his simulation to re�
quire a su�ciently large amount of random numbers�
To get a feeling of how many numbers certain simulations consume today
and thus how large the period of the employed generator should be� we quote
Halton ���� p���� �In a typical conventional particle�transport calculation�
using nonbranching random walks� we may compute some ��� 	 ��� random
walks� averaging perhaps ��� 	 ��	 steps each� with every step requiring
around �� random numbers� this adds up to a need for something of the
order of ��	 	 ���� random numbers��

��� Cross�testing

������� Donald Knuth ends his treatise on random numbers in ���� p�����
with the following advice� �The most prudent policy for a person to follow is
to run each Monte Carlo program at least twice using quite di�erent sources
of random numbers� before taking the answers of the program seriously��
This recommendation seems to be quite sensible and convincing� Suppose
we simulate some problem F twice� using two sequences x and y of random
numbers� If we �nd F �x� and F �y� to be completely di�erent� we are in
the unpleasant situation of knowing that one result is signi�cantly better
than the other � � �without knowing which� Conversely� if we �nd F �x� to be
close to F �y�� this seems to give rise to some optimism that both simulation
results are rather good� This optimism is well exempli�ed by Dudewicz and
Ralley in �
�� p���� �it is often desired to re�run at least part of a simulation
study using a quite di�erent generator �after which� if the two sets of results
agree� one has somewhat more con�dence that generator regularities were
not of such a serious nature as to vitiate the simulation study���

As long as the term �quite di�erent generator� is unspeci�ed� having
�somewhat more con�dence� is completely unfounded� All that can be de�
rived from F �x� being close to F �y� is that

jF �x�� F �y�j � j�F �x�� E�F ��� �F �y�� E�F ��j
� jj�F �x��E�F ��j � j�F �y��E�F ��jj
�

��#x�F �� #y�F ��� � ���

�




If c �� jF �x� � F �y�j is small� this only implies that that the pair
�#x�F ��#y�F ��� viewed as point in the plane� lies withing a diagonal stripe
of width c

p

�

�

�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

#x

#y

c

c

�

Without further assumptions� the point �#x�F ��#y�F �� can be 	 albeit
within this stripe 	 arbitrarily far from the origin� so both approximation
errors #x�F � and #y�F � can be arbitrarily large�

�����
� As with the pre	testing presented in Section ���� the above opti�
mism is based on a hidden assumption� The samples x and y are considered
�quite di�erent� in the sense that they are unlikely to be both simultane�
ously �bad� in a simulation� Given this assumption� we will see that the
above optimism is not only well�founded but in fact necessary�

Let F be a set of simulation problems� For F � F � let
#x�F � �� jF �x��E�F �j

and let #y�F � be de�ned analogously� Furthermore� for a �xed � � �� let

&��F � ��

�
� if j#x�F �� #y�F �j � ��
� otherwise�

The event &� is equal to � if and only if the point �#x�F ��#y�F �� lies within
the diagonal stripe of width �

p

�

��



Let �F �R� �� be a probability space such that #x� #y� and &� are random
variables� Then we have the following result�

Whenever the random variables #x and &� are negatively corre�
lated� then

E��#xj&� � �� � E��#x� � E��#xj&� � ��� �
�

Note that the negative correlation of #x and &� expresses the assumption
that x and y are unlikely to be simultaneously both �bad� in a simulation
problem� Note� too� that this �unlikelyness� depends not only on x and y
alone� but also on the set of problems F and their �weighting� � as well�
The proof of �
� is simply a transcription of the proof of our statement

on pre�testing given in �����
� just with the positive correlation assumed
there replaced by a negative one� there is no need to repeat it here�

Now what is the consequence of this if we observe that our simulations
F �x� and F �y� produce approximately the same result� If

� � jF �x�� F �y�j �

then ��� implies that
&��F � � ��

Hence� assuming the negative correlation of #x and &� and observing
jF �x� � F �y�j � �� we are forced to be optimistic about the approxima�
tion error produced by x� In this sense� Knuth�s recommendation is indeed
the �most prudent policy for a person to follow��

������� One might ask if the assumption of negative correlation can
be replaced by a weaker one� In general� this is not possible� If we set
� �� jF �x� � F �y�j and run the proof of �
� backwards� we get that �
�
implies the negative correlation of #x and &�� let

E��#xj&� � �� � E��#x��

If we assume that P��&� � �� is de�ned and positive� this implies

E��#xj&� � ��P��&� � ��

E��#x�P��&� � ��
� ��

��



Using the same argument as in �����
� yields

E��#x&��

E��#x�E��&��
� ��

which means that #x and &� are negatively correlated� In this sense� the
negative correlation of E��#x� and &� and the optimism expressed in �
�
are equivalent�

��� Employing deterministic error bounds

������� One might question the applicability of deterministic error bounds
when dealing with a probabilistic notion of goodness� Deterministic error
bounds seem to render the application of deterministic notions of quality
such as Criterion 
�� more appropriate� and we have already remarked in
�����
� that Criterion 
�� is in some sense much stronger than Criterion 
���
So why using the strong bounds with the weak criterion�
In this section we present two examples of applying Criterion 
�� in conjunc�
tion with a deterministic error bound from which we draw two interesting
conclusions� The �rst example shows that whenever Criterion 
�� is appli�
cable� Criterion 
�� is applicable as well� and both criteria suggest the same
sequences as being �good�� In this sense� the weak� probabilistic Criterion 
��
is consistent with the strong� deterministic Criterion 
��� The second exam�
ple gives a scenario where a deterministic error bound is available but no
�good� sequence can be found with Criterion 
��� In this case� Criterion 
��
will turn out to be applicable�

In both examples we will use the following result which is introduced�
stated formally� and proved later on� in Appendix A�

Let T be a mapping from F into Rs and let t be a point in
Rs� There exists a probability space �F �R� �� with E��T� � t
�taking expectations component�wise� if and only if t lies in the
convex hull of the set T�F��

With this� the problem of proving the existence of a probability space
�F �R� �� with E��T� � t is equivalent to solving a relatively simple ge�
ometric problem� We know that using a result before proving it is not the

��



way to run a smooth argument� regrettably the proof of the above is so
completely o� the track of thought we have followed so far that we cannot
help but do just this�

�����
� In both examples� we will use a deterministic error bound known
as Koksma�s inequality�	� This inequality concerns functions Ff of the form

Ff �x� �
�

N

N��X
n��

f�xn��

where f is a real�valued function on the closed unit interval�
 with bounded
variation���

Recall that approximative solutions of the problem Ff are approxima�
tions of the integral of f � If f is integrable and X � �Xn�

N��
n�� is a sequence

of N stochastically independent random variables each of which is equidis�
tributed on ��� ��� then the expectation of Ff �X� equals the expectation of
f�X��� which in turn is

R
f�X��d�� by means of Fubini�s theorem and the

independence of the Xn� we have

E�Ff�X�� �

Z

����N

Ff�X�d�N

�
�

N

N��X
n��

Z

����N

f�Xn�d�N

�� Other deterministic error bounds are available� and we might have used them instead�
A particularly interesting alternative is an error bound based on the diaphony which was
introduced by Zinterhof in ���"�� see also Stegbuchner ���"�� The advantage of this notion
is that� in contrary to the discrepancy on which Koksma
s inequality is based� the diaphony
of N points in Rs can actually be computed with reasonable e�ort for s � �� Moreover�
as pointed out on page ��� the diaphony has an interesting relation to the spectral test�

The reason for choosing Koksma
s inequality is twofold� First of all� Koksma
s inequality
is widely known and � mostly in the work of Niederreiter � ratings for various types of
random number generators with respect to this inequality are available� The second�
personal reason is that the concept of Criterion ��� was perceived in the contemplation of
Koksma
s inequality�

�
A generalization for the more interesting case of f being a function of more than one
variable is available� Since we intend to use Koksma
s inequality primarily for illustrative
purpose� the special case of f depending on just one variable will su�ce� Moreover� the
generalization has all the properties we require from the one�dimensional case� so all we are
going to show for functions f of one variable applies also to functions f of many variables�

��This is a technical requirement which we will describe in the following�

�




�
�

N

N��X
n��

Z

����

f�Xn�d�

�

Z
f�X��d��

For these problems Ff � Koksma�s inequality �due to Koksma ����� see
also �
�� Theorem 
���� provides an upper bound for the approximation
error #x�Ff � �� jFf�x��E�Ff�j� If f has bounded variation V �f� on ��� ���
then

#x�Ff� � V �f�D�
N�x�� ���

We do not prove Koksma�s inequality here� For a proof of it and its gen�
eralizations for functions of more than one variable� the Koksma�Hlawka
inequality� the reader is refered to Niederreiter �
�� Theorem 
�� and 
�����

Before we describe the quantities on the right side of Koksma�s inequality
in detail� observe its formal appearance� The error #x�Ff � depends on both
x and f simultaneously� With Koksma�s inequality� the error is bounded by
the product of two quantities D�

N�x� and V �f�� where the �rst depends only
on x and the second only on f � The contributions of x and f to the error
bound are 	 in this sense 	 independent"

The quantity D�
N�x�� the star�discrepancy� is de�ned as the rating of x

with respect to Criterion 
�� and the set

I ��
n
F�
��t� � � � t � �

o
�

Stated formally� this means

D�
N�x� �� sup

I
#x

� sup
��t��

���F�
��t��x��E�F�
��t��X��
��� �

One might ask how a sequence�s rating with respect to the particular
set I can be used to bound its rating with respect to arbitrary functions
of bounded variation� A hint is provided by a closer examination of the
functions F�
��t� � For one� we have

F�
��t��x� �
�

N

N��X
n��

�
��t��xn�

�
�

N
 fxn � xn � t� � � n � Ng �

��



and for the other

E�F�
��t��X�� �

Z
�
��t��X��d�

� ����� t��

� t�

So F�
��t��x� is the empirical distribution function of the numbers xn and
E�F�
��t��X�� is the equidistribution�s distribution function� both evaluated
at t� From this point of view� the star�discrepancy is the distance of these
two distribution functions with respect to the supremum�norm� Introduced
as such� the star�discrepancy is a special case of what is called Kolmogorov�
Smirnov statistic in the literature �see Bury ��� Section ���� 	 ����� or
Knuth ���� Section ������

For functions of the form F�
��t� � the following inequality holds due to the
de�nition of D�

N�x��
#x�F�
��t�� � D�

N�x��

This is generalized for more interesting functions than simple indicators by
the concept of variation� The quantity V �f�� the variation of f on ��� ��� is
de�ned as

V �f� �� sup

�
nX

n��

jf�an�� f�an���j � n � �� � � a� � a� � � � � � an � �
�
�

Note that if f is non�decreasing or non�increasing� then V �f� � jf����f���j�
Hence� for F�
��t� � I� we have V ��
��t�� � t and supfV ��
��t�� � F�
��t� � Ig �
��

������� With this we are ready to use Koksma�s inequality with the
deterministic Criterion 
��� For a �xed real number c � �� let Fc be the set
of all problems Ff for which the variation of f is at most c� i�e�

Fc �� fFf � V �f� � cg �
For this set� the following equality�� holds�

sup
Fc

#x � cD�
N�x�� �
�

��The idea for this is from Niederreiter
s ��"� Theorem ������ A consequence of his much
stronger result is that� instead of all functions Ff with V �f� � c� only those might be used
for which f is continuously di�erentiable in�nitely often�

��



In the sense of Criterion 
��� the sequence x is considered �good� with respect
to the set Fc if cD

�
N�x� is small� Just as with Koksma�s inequality the

contribution of x to the error bound was found to be independent of the
contribution of the function f � we �nd here that the contribution of x to
supFc #x is independent of Fc� This is particularly useful since it causes us
to regard x as �good� if D�

N�x� is small� regardless of whatever value c might
have�

Proof of ���� Avoiding trivialities�� � let c � � be �xed� Note that
#x�Fcf � and V �cf� both are 	 by de�nition 	 linear in c�

#x�Fcf � � c#x�Ff�

and
V �cf� � cV �f��

Instead of considering the whole set Fc� we will �nd that a quite small subset
Ic is representative with respect to the supremum of #x� Let

Ic ��
n
Fc�
��t� � � � t � �

o
�

Note that I� � I� Since Fc is a superset of Ic� we have of course

sup
Fc

#x � sup
Ic

#x�

On the other hand� there is��

sup
Fc

#x � sup fD�
N �x�V �f� � Ff � Fcg

� cD�
N�x�

� c sup
I
#x

� sup
I
c#x

� sup
Ic

#x�

These two inequalities imply �
�� �

��For c � �� Fc contains only those Ff for which V �f� � �� i�e� for which f is constant�
For these Ff � the error �x�Ff� is always zero and ��� does always hold� independent of
x�

��In this series of �in��equalities� we make use of Koksma
s inequality� the de�nitions of
Fc and D�

N �x�� the linearity of �x�Fcf� in c� and the de�nition of Ic�

��



Now suppose we search for a sequence x which should be �good� with
respect to Fc by applying Criterion 
�� instead of Criterion 
��� Will we
prefer sequences with small star�discrepancy� Will the application of the
weak criterion suggest the same sequences as the strong one�
There is no answer to this question in general� We might consider a sta�
tistical test T as highly relevant� which a sequence x passes� but which
a sequence y with smaller star�discrepancy utterly fails� As described in
Section ���� applying Criterion 
�� in this case indicates that x should be
preferred although its star�discrepancy is larger� But doing so� we would
have used information 	 the relevance of the test T and the behavior of x
and y in this test 	 which Criterion 
�� per de�nition does not take into
account� Let us try to apply Criterion 
�� using no more information than
we have needed to apply Criterion 
�� in the �rst place�

Let �Fc�R� �� be a probability space such that #x is a real�valued ran�
dom quantity� Suppose all we know about this probability space is the
value�� of c� in particular� suppose R and � are unknown to us� What
can be derived about the expected approximation error E��#x�� We can
of course use the deterministic error bound �
�� since #x � supFc #x with
certainty� we have

E��#x� � cD�
N�x�� ���

But how accurate is this upper bound� The measure � is not known to us�
and the expectation of #x with respect to this unknown measure can be
quite far away from cD�

N�x�� The point is this�

If only c is known but � is not� then the upper bound in ��� is
best possible�

By �best possible�� we understand that there are so many probability spaces
consistent with the provided information �the value of c�� i�e� there are so
many 	�algebrae R on Fc and so many measures � on these R that all�
that can be said about E��#x� is that it is at most cD

�
N�x�� If nothing else

is known� E��#x� can be arbitrarily close to cD�
N�x�� Lacking additional

information� we regard x as �good� with respect to Criterion 
�� if cD�
N�x�

is small� In particular� we regard a sequence with small star�discrepancy as
�good�� regardless of the actual value of c�

Proof that ��� is best possible� Avoiding trivialities� let c � � be
�xed and known to us� Let R be a consistent 	�algebra on Fc� i�e� one

��This information is required by Criterion ���� too�

��



for which #x is measurable� Finally� let M be the set of all probability
measures on �Fc�R� �note that M is the set of all probability measures
consistent with the available information and with R�� For the set

E �� fE��#x� � � � Mg �

we show
sup E � cD�

N�x��

which means that ��� is best possible�

Proposition A�� states that E is equal to the convex hull of the possible
values #x�

E � conv#x�Fc��

The one�dimensional convex set conv#x�Fc� is an interval
�� and� due to

�
�� its upper endpoint is cD�
N�x�� �

������� Since Criterion 
�� worked well for the set Fc and any �nite
c � �� one might expect it to be applicable to the set

F� �� fFf � V �f� ��g �

too� F� is the union of all the sets Fc taken over all values c � � and
therefore it is a superset of each speci�c Fc� this and �
� yield


c � � � cD�
N�x� � sup

F�

#x�

Hence supF� #x ��� independent of the star�discrepancy of x� For this set
F�� no �good� sequence x can be found with Criterion 
�� since supF� #x
equals � for any sequence x�

This is not the expected result� For any �nite c � � and the corre�
sponding set Fc� Criterion 
�� caused us to prefer a sequence with small
star�discrepancy� Intuition suggests that for the union F� of these sets�
sequences with small star�discrepancy should be preferable� too�
Of course� if V �f� is �nite but arbitrarily large� �
� implies that #x�Ff �
can also be arbitrarily large� The intuitive preference for sequences with
small star�discrepancy seems to be based on the assumption that although
V �f� can be arbitrarily large� it is not expected to be� Let us express this
assumption in the terminology of Criterion 
���

��See page ��� for a proof of this�
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Let �F��R� �� be a probability space such that #x and the mapping
V � Ff �
 V �f� are real�valued random variables� Suppose we know that
E��V � � c� but R and � are not known to us� Due to Koksma�s inequality
and E��V � � c� we have

E��#x� � cD�
N�x�� ���

In analogy to the previous example� the following holds�

In this state of information� the upper bound in ��� is best pos�
sible�

Hence� if no more information is available� then ��� is all that can be de�
rived about E��#x�� We regard a sequence x as �good� with respect to
Criterion 
�� and the given information if cD�

N�x� is small� since the �qual�
ity� of x does not depend on the actual value of c� we regard a sequence as
�good� with respect to the available information if D�

N�x� is small� regardless
of c�

Proof that ��� is best possible� Let R be any 	�algebra on F� for
which #x and V are measurable� As a auxiliary tool� we de�ne the mapping

( � F� �
 R�

Ff ��
 �#x�Ff �� V �f���

which is measurable since both #x and V are measurable�
What we have to show is the existence of probability measures � on �F��R�
which are consistent with the available information �i�e� E��V � � c� and for
which E��#x� gets arbitrarily close to cD�

N�x��
Due to Proposition A��� this is equivalent to showing that there are points
�r� s� in the convex hull of (�F�� with s � c for which r gets arbitrarily
close to cD�

N�x��

The set Fc is contained in F� and so are the corresponding convex hulls�
In ������� we have shown that

sup fr � r � convf#x�Fc�gg � cD�
N�x��

Since
f�r� s� � conv (�F�� � s � cg � conv (�Fc��

�




we have

sup fr � �r� s� � conv (�F��� s � cg � sup fr � �r� s� � conv (�Fc�g
� sup fr � r � conv#x�Fc�g
� cD�

N�x��

�

��



Chapter �

Some generators

He deals the cards to �nd the answer
the sacred geometry of chance

the hidden law of a probable outcome�
The numbers lead a dance�
� Sting� Shape of My Heart

��� Preliminaries

������� Apart from designing statistical tests� the best assistance mathe�
matics can provide to a user searching for a �good� random sequence is the
analysis of random number generators� For these deterministic algorithms
for generating random numbers� the presence or absence of certain defects
can be proven� Understanding the nature of these defects and assessing their
relevance for his simulation problem� the user can judge whether or not a
given generator can be considered adequate ��good���

In the following� we give a precise de�nition of the generators presented
in Section ��
� and state and prove the existence or absence of the already
mentioned defects� The reader who is not interested in the mathematical
details involved and who is content to believe what we have said about the
generators so far may skip this chapter�

�����
� The generators we are about to consider and in fact virtu�
ally all generators in use today are congruential generators� They pro�

��



duce a sequence �un�
N��
n�� of integers which are spread evenly in some set

f�� �� � � � �M��g and transform these integers to a sequence �xn�N��n�� of ran�
dom numbers in ��� �� by setting xn �� un�M � The reason for this is twofold�
Performing all calculations in integer arithmetic except for the �nal scaling
assures that no propagating round�o� errors are introduced in the actual
generation of the random numbers on a computer� In this way� a random
number generator will produce the same sequence regardless of the �oating
point representation used by the computer it is run on�� The other reason
for �rst computing an integer sequence is the mathematical structure of the
set f�� � � � �M��g� which we will employ in the following and which is brie�y
sketched below� a more complete discussion of these algebraic and number
theoretic topics is given by Lidl and Niederreiter in �����

������� For a positive integer M � let ZM �� f�� �� � � � �M � �g be the
system of all residues modulo M � Furthermore� let Z�

M be the set of all
numbers from ZM which are coprime to M � To obtain some arithmetic
structure on ZM � we use the modulo operation a modM � which yields the
residue of the integer division of a by M � The addition of two elements a
and b of ZM is de�ned as

�a! b� modM

and their multiplication as

�a � b� modM�

We will omit the trailing mod and write a! b� a � b� or simply ab when it is
clear that we are operating in ZM �

With these conventions� we get the following�

�ZM �!� and �Z�
M � �� both are abelian groups�

Moreover� if M � p is prime� then

�Zp�!� �� is a �nite �eld��
�This holds provided the integer computations are correctly implemented� which is not

always the case �see ��� Section ������ or ������� Fortunately� it seems to have become un�
popular nowadays to believe that a correct implementation of a random number generator
is as good as an incorrect one since its output is supposed to be random anyway� � �

�For a � Z�
p� its inverse a

�� is the uniquely determined number such that a �a�� � � in
Zp� The inverse can be obtained by the Euclidean algorithm� since a and p are coprime�
there are integers k and l such that ka# lp � �� thus a�� � k mod p� Another way to get
a�� is Fermat
s theorem� which states that ap�� � � in Zp� therefore a

�� � ap�� mod p�

��



Except for �eld�isomorphisms� there is a unique �nite �eld with p elements
called Fp� Zp can therefore be identi�ed with the general �eld Fp�
The integral domain of all polynomials in x over Fp is denoted by Fp�x��
Working with polynomials from Fp�x� is very similar to working with poly�
nomials over R� The fundamental theorem of algebra� holds in Fp�x�� and
two polynomials from Fp�x� are equal if and only if their coe�cients coincide�
Since �Zp�!� �� is a �eld� there is 	 for s � � 	 an s�dimensional vector space
over Zp which we denote by Z

s
p or F

s
p �

��� LCG

De�nition ��� Let a� b� u� � ZM � The linear congruential generator� LCG�
for short� with parameters M � a� b� and u� de�nes a sequence �un�n�� in
ZM by

un �� a � un�� ! b �n � ��

and a sequence �xn�n�� of random numbers in ��� �� by

xn ��
un
M

�n � ���

���
��� The sequence �un�n�� of an LCG is de�ned by a recursion of
order one on the �nite set ZM � Hence it will eventually repeat itself and so
will the corresponding sequence of random numbers� Since this is usually
considered a major defect� we adopt the convention of using only as many of
the xn as do not enter a cycle� formally� we use �un�

N��
n�� and �xn�

N��
n�� with

N de�ned as
N �� minfj � � � �i � j � ui � ujg�

Moreover� we will consider only LCGs whose sequences are purely periodic
�i�e� x� � xN �� in this case N is called the period of the corresponding
generator�
We denote the sequence �un�

N��
n�� by lcg�M� a� b� u�� and the sequence

�xn�
N��
n�� by LCG�M� a� b� u���

In the following� we will consider the s�tuples �xn� � � � � xn�s��� formed
from the sequence �xn�

N��
n�� and the analogous sequence of s�tuples formed

�If h � Fp�x� is a non�zero polynomial of degree k� then h has at most k roots in Fp�

�




from �un�
N��
n�� � To avoid technical di�culties� we always implicitly assume

that the indices are reduced modulo N � This is� say�

�xN��� xN � � � � � xN�s��� � �xN��� x�� � � � � xs����

In this way� we do not have to bother with a wrap�around in the s�tuples
when n approaches N �

���
�
� Since we are operating on the M �element set ZM � the period of
an LCG is at mostM � Necessary and su�cient conditions on the parameters
a� b� and u� to achieve the maximal possible period length are given in
Knuth ���� Section ��
�� Theorem A� B� and C� or Ripley ���� Theorem 
���

�
� and 
����
For our present purpose� we restrict ourselves to the following three standard
types� of maximal possible period LCGs which are either mathematically
interesting or computationally e�cient�

�� M a power of 
� a � � mod 
� b odd�
In this case� we get a period of N �M �


� M � p prime� a a primitive root� modulo p� b � �� u� 	� ��
In this case� we get a period of N � p� ��

�� M � � a power of 
� a � � mod 
� b � �� u� odd�
In this case� we get a period of N �M���

Note that for each type� the set fun � � � n � Ng of the integers produced
by an LCG is suspiciously regularly distributed� it is equal to ZM for Type

	 �
and equal to ZM n f�g for Type
 
� for Type �� it is equal to all numbers
of the form 
k ! � in ZM � where k � � is either an even or an odd integer

�These standard types of LCGs are obtained from Ripley ���� or from Niederreiter ��"�
p������

�a � Zp is a primitive root modulo p if the set of powers fa�� a�� � � � � ap��g is equal to
Z�
p� or� in other words� if a generates Z�

p�
�The recursion operates in the M �element set ZM where it achieves the maximal possi�

ble period ofM � since it produces exactly M di�erent values� each value in ZM is produced
exactly once�


In this case� the recursion operates in the �M 
 ���element set ZM n f�g and has a
period of M 
 ��

��



depending on whether the number l� for which u� � 
l! �� is even or odd
��

The regular pattern of the un in ZM is transposed to a regular pattern of
the xn in ��� ���

���
��� To prove the existence of a lattice structure in the LCG�s output�
let s � 
 be a �xed integer and let

P �� fxn � �xn� xn��� � � � � xn�s��� � � � n � Ng

be the set of s�dimensional points produced by the LCG� To describe the
lattice�like structure of P � we need the following formal de�nition of an s�
dimensional lattice� which is given according to Gruber and Lekkerkerker ����
Section ���� De�nition ���

De�nition ��� Let a�� � � � � as�� � Rs be linearly independent� The set

) ��

�
s��X
i��

kiai � ki � Z
�

is called the s�dimensional lattice with basis fa�� � � � � as��g�

A lattice shifted by a vector x is denoted by x!)�

The lattice structure of the set P produced by an LCG is described by
the following proposition which� as its proof� is given according to Ripley ��
�
�see also �
�� Theorem ������

Proposition ��� For an LCG of Type � and �� there exists a lattice ) such
that

P � ��� ��s��x� !)��
For an LCG of Type 
� there exists a lattice ) such that

P � ��� ��s�)�
�A simple inductive argument shows that� if u� � ��� � k� # �� the LCG
s recursion

operates in the �M����element set f� � i# � � � � i � M��g where it achieves a period of
M��� Conversely� if u� � ��� � k # �� # � � � � k # �� then the recursion operates in the
�M����element set f� � i# � � � � i � M��g where it again achieves a period of M���

��



Proof of Proposition ���� We prove Proposition ��� only for LCGs
of Type �� the proof for the remaining types uses the same basic idea and
di�ers only in some details� The idea is based on the following trick to
represent the j�th component of the integer vector un � �un� � � � � un�s����
For any lcg�M� a� b� u��� we have

un�j � uj ! aj�un � u�� �� � j � s�

in ZM as is easily proved by induction��

Let �un�
M��
n�� � lcg�M� a� b� u�� be of Type �� Since the period of this

generator is M � we may assume�� u� � �� For a �xed index n� the above
representation of un�j yields

un�j � uj ! ajun �� � j � s�

in ZM � Since addition and multiplication in ZM are de�ned via reduction
modulo M � there are uniquely determined integers kj for which we have

un�j � uj ! ajun ! kjM �� � j � s�

in R� For the corresponding xn� this means

xn�j � xj !
aj

M
un ! kj �� � j � s�� ���

To extend this equality to the vectors xn� we de�ne the s linearly indepen�
dent vectors

b� ��
�

M
��� a� a�� � � � � as����

bj �� ej � the j�vector of the standard ordered basis of Rs �� � j � s��

�Let the index n be �xed� The equality is trivial for j � �� Supposing it holds for some
j � �� we get

un	j	� � aun	j # b

� a�uj # aj�un 
 u��� # b

� auj	� # aj	��un 
 u��

in ZM �
��The sequences lcg�M�a� b� �� � �un�

M��
n�� and lcg�M�a� b� u�� � �vn�

M��
n�� of Type �

di�er only by a cyclic permutation� in particular� both sequences yield the same set P�

��



Note that we use ��based indices� Hence the standard ordered basis of Rs

is fe�� � � � � es��g� All the components of ei are � except for the �i ! ���st�
which is ��

With this� we can write ��� in vector form�

xn � x� ! unb� !
s��X
j��

kjbj �

Hence every point xn lies on the shifted lattice x� ! )� where ) is spanned
by the lattice basis fb�� � � � �bs��g��� In other words�

P � ��� ��s��x� !)��

Conversely� if we take an arbitrary point p from ��� ��s��x� ! )�� it has
the form

p � x� ! l�b� !
s��X
j��

ljbj �lj � Z��

Since p lies in ��� ��s� its �rst coordinate is between � and �� � � x�!l�
�
M � ��

Recalling that we assumed x� � � and multiplying this inequality byM � we
get

� � l� � M�

i�e� l� � ZM � Since the integers un run through the whole set ZM � there is
l� � un for some n� Thus

p � x� ! unb� !
s��X
j��

ljbj �

This representation of p is quite similar to the above representation of xn�
it remains to show that li � kj for � � j � s�
As we have noted before� the integers kj are uniquely determined by the
reduction modulo M � i�e� by demanding that un�j � ZM or� equivalently�
that xn�j � ��� ��� In other words� the integers k�� � � � � ks�� are the only
ones for which

x� ! unb� !
s��X
j��

kjbj � ��� ��s�

��This lattice basis is the same for LCGs of Type � and �� The lattice basis for a Type �
LCG is similar� just with M replaced by M�� in the de�nition of b��

��



Thus li � ki for � � i � s� p � xn� and

��� ��s� �x� !)� � P �
With this� the two sets are equal� �

���
��� Although we have proven the existence of a �shifted� lattice
formed by an LCG�s s�dimensional points with Proposition ��� and although
we obtained a basis for the lattice in the proof� this particular basis does
not seem to be well suited for assessing the lattice�s quality� Considering
the lattices formed by the LCGs in Figure � on page �� and looking at the
corresponding basis vectors as obtained from the proof� we have to admit
that these lattice bases are not those we would have chosen by intuition�
For the generator in Figure �a� the lattice basis found in the proof is

b� � �
�

��
�
�
��
�

��
�
��

b� � ��� ���

whereas the corresponding lattice basis for the generator in Figure �b is

b� � �
�

��
�
�
���

��
�
��

b� � ��� ���

In the contrary to the resulting lattices� these bases do not seem to be
much di�erent� The basis suggested by the visual perception of a 
� or
��dimensional lattice is one whose vectors have the shortest possible length�

This feature is provided by a Minkowski�reduced lattice basis �MRLB�
for short� which is de�ned by the following 	 non�constructive 	 procedure�
given an s�dimensional lattice )� a MRLB fm�� � � � �ms��g is obtained by
�rst choosing a basis vector m� as short as possible and� if m�� � � � �mk��

�� � k � s� have been chosen� choosing a basis vector mk as short as pos�
sible� Note that as a consequence of this procedure� the vectors of a MRLB
are ordered according to their length� jjm�jj � jjm�jj � � � � � jjms��jj�
Although an MRLB of a lattice does always exist� it is� in general� not
unique� More precisely� for s � �� one can �nd a lattice ) and two MRLBs
fm�� � � � �ms��g and fn�� � � � �ns��g of ) with jjmkjj 	� jjnkjj for some k�
For s � �� however� this is not possible�
Since Minkowski�reduced lattice bases are used only as an auxiliary notion
in the next paragraph of this section� we will de�ne and discuss it and the

��



above claims more formally later� in Section B�
 in the appendix�
Algorithms to compute a MRLB for a given LCG and dimensions s � 
�
� � s � �� and s � �� respectively� are given by A*erbach in ��� Chapter ��
Algorithms MB�
� MB����� and MB�n����

���
��� The notion of a Minkowski�reduced lattice basis gives us a pre�
cise formulation of the intuitive idea of choosing a basis of successively short�
est possible vectors� With this� we can de�ne the �gures of merit for assessing
the quality of a lattice� which we informally introduced in ���
����

The Beyer�quotient qs was pictured there as �the relation qs of the short�
est to the longest edge of the unit cell of the lattice�� Since the vectors of a
MRLB span what is intuitively called a unit cell� we can 	 at least for s � �
	 de�ne according to Beyer ����

Let ) be the s�dimensional lattice of an LCG as in Proposi�
tion ���� For a MRLB fm�� � � � �ms��g of )� the quantity

qs ��
jjm�jj
jjms��jj

is called the corresponding Beyer�quotient�

Because the lengths of the vectors of a MRLB are uniquely determined only
for s � �� the same may apply to the Beyer�quotient� see Section B�
 for a
discussion of this�
It is clear that � � qs � �� Values of qs close to � are considered �good� since
the corresponding unit cell is more cube�like�

The second �gure of merit presented in ���
���� the spectral test� was
introduced as �the maximal distance ��
s of parallel hyperplanes which cover
the LCG�s lattice in Rs�� For an LCG�M� a� b� u�� � �xn�

N��
n�� and s � N �

we have the following���

��Although A$erbach
s last algorithm� MB�n� works for arbitrary dimensions� it should
be used only with greatest care and suspicion because it possibly produces wrong results�
given any basis of an s�dimensional lattice % as input� the algorithm transforms it into
supposedly equivalent bases until it ends up with a MRLB� Two sets of s linearly inde�
pendent vectors span the same lattice % if and only if they are transformed to each other
by a unimodular matrix �i�e� an integral matrix with determinant ��� see ���� Section
���� Theorem "��� Due to an oral communication with Niederreiter ����� non�unimodular

matrices can occur in the progress of algorithm MB�n� and so its result can be a basis
spanning a lattice %� di�erent from %�

��For s 
 N � the N � s
 � points produced by the LCG are all contained in just one
hyperplane in Rs and should therefore not be used anyway�

�




Let ) be the s�dimensional lattice of an LCG as in Proposi�
tion ���� Then ) de�nes the so called dual lattice )���� The
value of the spectral test is

�


s
�

�

jjmjj�

where m is the shortest nonzero vector in )��

Thus computing the spectral test amounts to �nding the shortest vector in
)�� which can be found as described in Dieter �
��� Knuth ���� Section ����
Algorithm S�� or Ripley ���� p���� �a FORTRAN code for dimensions s � 

is given in ���� Section B�����
We postpone the proof of the above statement to Section B�� in the ap�
pendix� The reason is that the complete discussion of the spectral test is
lengthy and not as much concerned with LCGs than with lattices in general�
We avoid the detour of handling the spectral test here�

���
��� Having proven the existence of a lattice structure in the output
of an LCG� it is fairly easy to describe the speci�c long�range correlations�
the critical distances� in its sequence� The following�� is a consequence of
understanding what Eichenauer�Hermann and Grothe showed in �����

Proposition ��� For an LCG �xn�
N��
n�� of Type � to �� the points

�xn� xn�s� �� � n � N�

have a lattice structure in R��

Proof� Let �xn�
M��
n�� � LCG�M� a� b� �� be of Type � �We prove

this proposition only for this type� The proof for the remaining types
is analogous�� Since the LCG is purely periodic with period M and
the proposition is trivial for s � �� we can assume � � s � M � Let
xn � �xn� � � � � xn�s� be the �s ! ���dimensional points obtained from the

��% does not only de�ne %�� Given a lattice basis of %� a lattice basis of %� can be
computed� see �B�����

��There is a slight generalization of this� whose statement and proof unfortunately
require too many technical details from lattice theory to be stated here� The interested
reader may consult Section B�� or� most likely� the whole Appendix B�

��



LCG and let P � fxn � � � n � Mg be the set of all these points� From
Proposition ���� we know that

P � ��� ��s����x� !)��

where the lattice ) is spanned by the vectors

b� ��
�

M
��� a� a�� � � � � as��

bj �� ej �� � j � s��

To obtain the tuples �xn� xn�s�� we use the 
� �s! ���matrix

T ��

�
� � � � � � �
� � � � � � �

�

which de�nes a function from Rs�� to R�� mapping x � Rs�� to Tx� With
this� we have

TP � f�xn� xn�s� � � � n � Mg �

The proof is complete if we can show that

)� �� T) is a lattice in R� �
�

and that
TP � ��� ���� �Tx� !)�
 � ���

To prove �
�� observe the following� ) is the set of all integer linear
combinations of the bi �� � i � s�� T is linear� so )� � T) is the set of
all integer linear combinations of the Tbi� Moreover� for � � i � s� we
have Tbi � ��� ��� Hence )

� is the set of all integer linear combinations of
Tb� � ��M��� as� and Tbs � ��� ��� Because these two vectors are linearly
independent� )� is a lattice in R��

To prove ���� we show that the sets on each side of the equation are
included in each other� For one� we have

TP � T
�
��� ��s����x� !)�

�
� T ��� ��s���T �x� ! )�
� ��� �����Tx� !)���


�



The second inclusion needs some extra consideration� First note that Zs��

is a subset�	 of )� Any point z � Rs�� can be written as the sum of two
other points

z � bzc ! fzg�
where the coordinates of bzc are all integers and the coordinates of fzg are
all between � inclusive and � exclusive� From the de�nition of a lattice� we
see that for any two points p�q � )� their sum p!q is as well contained in
)� For any lattice point p� we have bx� ! pc � Zs�� and this yields

fx� ! pg � x� ! �p� bx� ! pc�
� x� ! )�

Now we are ready for the second inclusion of ���� For

Tx� ! x� � ��� �����Tx� !)���

there is a lattice point p � ) with

T �x� ! p� � Tx� ! x��

Choosing x such that
x� ! x �� fx� ! pg

implies x� ! x � ��� ��s����x� ! )�� Since Tx� ! x� � ��� ���� the �rst
and the last coordinate of x� ! p are in ��� ��� This and the de�nition of
x� ! x � fx� ! pg yield

T �x� ! x� � Tx� ! x��

which completes the proof� �

��The lattice Zs	� is spanned by the standard ordered basis fe��e�� � � � �esg of Rs	��
so it is contained in % if the ei are� For i � �� � � � � s� the ei are of course in % because
they are part of a lattice basis� For i � �� we have

e� � Mb� 


sX
i��

aibi

which is thus contained in %�


�



��� ICG

������� The inversive congruential generator �ICG� is a recursive congruen�
tial generator using a recursion of order one� just like the LCG� But unlike
linear generators� the ICG�s recursion is based on a highly nonlinear func�
tion� For a �large� prime p and a � Zp� let

�


a ��

�
a�� � a � Z�

p�

� � a � �

in Zp�

De�nition ��� Let p be a 
large� prime and a� b� u� � Zp� The inversive
congruential generator� ICG� for short� with parameters p� a� b� and u�
de�nes a sequence �un�n�� in Zp by

un �� a � un�� ! b �n � ��

and a sequence �xn�n�� of random numbers in ��� �� by

xn ��
un
p

�n � ���

�����
� An ICG is of course periodic for the same reason an as LCG�
The same considerations as in ���
��� apply to the ICG� In particular� we
only consider ICG which are purely periodic with some period length N �
and for these ICG� we agree to use only the �rst N numbers �xn�

N��
n�� � And

as before� it seems desirable to choose the ICG�s parameters as to maximize
its period length�
We denote the sequence �un�

p��
n�� by icg�p� a� b� u�� and the sequence �xn�

p��
n��

by ICG�p� a� b� u���

A necessary and su�cient condition under which ICG�p� a� b� u�� has the
maximal period length N � p is given by Flahive and Niederreiter in �����
This necessary and su�cient condition� and even a just su�cient one given
in ���� or �
�� Theorem 
���� are such that their statement and their proof
require some background in the theory of �nite �elds that we do not want

�
Note that we are not computing in R but in the �nite �eld Zp now� As pointed out
in �������� for any a � Z�

p� there is a unique element a�� � Z�
p such that aa�� � � in Zp�







to introduce here� In the following� whenever we refer to a generator as an
ICG� we simply assume it has maximal period p� Moreover� since we only
present results for the totality fu�� � � � � up��g � Zp of an ICG�s output� we
additionally assume u� � �� Thus� when talking about an ICG� we always
assume it has the form

ICG�p� a� b� �� � �xn�
p��
n���

A description of algorithms to compute the parameters for maximal pe�
riod ICGs is given by Hellekalek in ����� For p � 
�� � � being a Mersenne
prime� tables of parameters for maximal period ICGs are presented by
Hellekalek� Mayer� and Weingartner in ��
��

������� To study the structure of the s�dimensional points xn �
�xn� � � � � xn�s��� of an ICG� we switch to the corresponding integer s�tuples

un � �un� � � � � un�s����

which we view as points not in Rs but in the �nite vector space Zs
p� We

will �nd this to be technically convenient� As in ���
���� we assume that the
indices of the un and xn are reduced modulo the generator�s period p�

Switching from xn to un does not really matter since they di�er only
by a constant scaling factor p� any structure of the xn is inherited by the
un� and vice versa� The change from Rs to Zs

p however� from an in�nite
vector space to a �nite one with di�erent arithmetical structure� needs some
explanation� Zs

p is contained in R
s because we have

Zs
p � ��� p�

s�Zs�

A hyperplane Hn�c in R
s� de�ned by a nonzero vector n � Rs and a con�

stant c � R� is the set of those points x � Rs for which�� �n�x� � c�
A hyperplane in� say� Z�

p is a discrete set of integer points� If we picture
these as points in R�� we �nd that they all lie on one straight line which is
folded when it leaves the square ��� p��� More generally� a hyperplane in Zs

p

��For two points x � �x�� � � � � xs��� and y � �y�� � � � � ys��� in R
s� we denote their inner

product by �x�y
 �

�x�y
 ��

s��X
i��

xiyi�


�



corresponds�� to a �nite number of parallel hyperplanes in Rs� Conversely�
any hyperplane in Rs which contains at least s a�nely independent points
from ��� p�s�Zs corresponds�� to a single hyperplane in Zs

p�
We are about to show that the s�dimensional points of an ICG do literally
avoid the hyperplanes in Zs

p� Due to the above correspondence of hyper�
planes in Zs

p an Rs� hyperplanes in Rs are also avoided� In this sense�
switching from Rs to Zs

p is meaningful� The technical convenience gained
by changing to Zs

p will become apparent in the forthcoming proofs�

������� To prove that the un avoid the hyperplanes in Zs
p� we use a

technique due to Niederreiter �
�� Theorem 
���� We show that for most of
these points� the condition

un is contained in a given hyperplane

can be translated to

n is root of a corresponding nonzero polynomial of degree s over
Zp�

Since such a polynomial has at most s roots in Zp� it will follow that at most
s of these points are contained in any given hyperplane�

The primary device to translate between the above conditions for a full
period icg�p� a� b� �� � �un�

p��
n�� is the mapping

P � Zp �
 Zp

x ��
 ax! b

��For n � Zs
p n f�g and c � Zp� the hyperplane

fx � Zs
p � �n�x
 � c �in Zp�g

in Zs
p corresponds to those hyperplanes Hn�c	kp �k � Z� in Rs which intersect ��� p�s
Zs�

��Let Hn�c be a hyperplane in Rs containing s a�nely independent points p�� � � � �ps��
from ��� p�s
Zs

p� The pi are contained in the vector space Zs
p� and it is easy to see that

they are a�nely independent in Zs
p� Hence there is a uniquely determined hyperplane

Hn��c� in Zs
p which contains all the pi� As we have seen above� this hyperplane in Zs

p

corresponds to some of the hyperplanes Hn��c�	kp �k � Z� in Rs� Since we assumed that
the pi are covered by one hyperplane Hn�c in Rs� we can conclude that for one integer
k�� we have Hn�c � Hn��c	k�p�


�



and its iterates

P j�x� ��

�
x � j � ��

P �P j���x�� � j � ��

For these� we have��

Lemma ��� Let �un�
p��
n�� � icg�p� a� b� �� be a full period ICG� If � � j � p

and
x 	� �aui �� � i � j�

in Zp� then
��

P j�x� � uj
x! auj
x! auj��

�

Proof� We use induction on j� Throughout the proof� we always
compute in Zp� Let j � � and x 	� au� �which means x 	� � since we chose
u� � ���

With this� the de�nition of P and the basic recurrence of the ICG yield

P ��x� � b! ax

�
bx! a

x

� b
x! ab

x

� u�
x! au�
x! au�

�

Now suppose the induction hypothesis holds for any integer between �
and j inclusive with � � j ! � � p� Let x � Zp such that

x 	� �aui �� � i � j ! ���

Before we can apply the induction hypothesis to P j���x� � P j�P �x��� we
have to verify its applicability for P �x�� By the choice of x� we have

ax! b 	� �ui ! b �� � i � j ! ���

��See ��"� Equation �������
��Instead of ab��� we also write a

b
�


�



The left side of this equation is equal to P �x�� The de�nition of ui � aui��!b
yields that the right side is �ui ! b � �aui��� This means

P �x� 	� �aui �� � i � j��

and the induction hypothesis is applicable for P �x��

P j���x� � P j�P �x��

� uj
ax! b! auj
ax! b! auj��

� uj
ax! uj��
ax! uj

� uj
a! uj��x

a! ujx

�
a ! uj��x

auj ! x

� uj��
x! auj��
x! auj

�

Hence the induction hypothesis holds for j ! �� too� �

������� With Lemma ���� it is fairly easy to prove that ICGs avoid the
planes� as was originally shown by Eichenauer�Hermann in ��
� �the proof
given here stems from Niederreiter �
�� p��
����

Proposition ��� Let s � 
 and let ICG�p� a� b� u�� be a full period ICG�
Then any hyperplane in Zs

p contains at most s of the points

un � �un� � � � � un�s��� �� � n � p�

for which the �rst s� � coordinates are nonzero�

The statement is trivial for s � p even without the condition of nonzero
coordinates� because the ICG can produce only p � s distinct points� Oth�
erwise� s � � of those u�� � � � �up�� are excluded from the proposition for
which xn � un�p lies on one of the �left�sided� faces of ��� ��

s� This is not
much of a restriction if s is small� If s is large and� in particular� if s is close
to p� all except just p � s of the xn lie on the �left�sided� faces of ��� ��

s� in
this case� you probably would not want to use the given ICG anyway and
prefer a generator with longer period instead�


�



Proof� Throughout the proof� we always compute in Zp� The propo�
sition trivially holds for s � p as noted above� therefore let s � p� Without
loss of generality� we assume u� � �� The ICG�p� a� b� �� has the full period
p� so the sequence �un�

p��
n�� visits every element of Zp exactly once� Hence

f�un� un��� � � � � un�s��� � � � n � pg
�
	
�P ��x�� P ��x�� � � � � P s���x�� � x � Zp



�

Let us see how the condition �the �rst s�� coordinates of un are nonzero�
can be formulated for the second set above� A point in the second set has a
nonzero �rst coordinate if P ��x� � x 	� �� by the choice of u� � �� this means
x 	� �au�� If we have x 	� �au�� then Lemma ��� yields that P ��x� 	� �
if x 	� �au�� If we have x 	� �au� and x 	� �au�� then Lemma ��� yields
that P ��x� 	� � if x 	� �au�� Proceeding this way� we get that a point
�P ��x�� � � � � P s���x�� in the second set has its �rst s�� coordinates nonzero
if and only if x 	� �aui for � � i � s� ��
We have to show that the set of points

P �� f�un� � � � � un�s��� � � � n � p� un� � � � � un�s�� 	� �g
intersects any given hyperplane in Zs

p in at most s points� With the above
considerations� we have

P �
n
�P ��x�� � � � � P s���x�� � x � Zp n f�au�� � � � ��aus��g

o
�

Now let b � �b�� � � � � bs��� � Zs
p n f�g and c � Zp� A point

�P ��x�� � � � � P s���x�� � P lies on the hyperplane de�ned by b and c if and
only if

s��X
i��

biP
i�x�� c � ��

Lemma ��� is applicable to the coordinates of any point in P � With this�
the above hyperplane�equation translates to

b�x!
s��X
i��

biui
x! aui
x! aui��

� c � ��

Clearing denominators� this is equivalent to h�x� � �� where h is a polyno�
mial over Zp�

h�x� � �b�x� c�
s��Y
i��

�x! aui��� !
s��X
i��

biui�x! aui�
s��Y
j � �
j 	� i

�x! auj����
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We will show that h has at most s roots in Zp� which essentially completes
the proof� in the above representation of P � every point is uniquely identi�ed
by a particular x � Zp n f�au�� � � � ��aus��g� If h has at most s roots in
Zp� it has of course at most s roots in Zp n f�au�� � � � ��aus��g� so at most
s points of P lie on the hyperplane de�ned by b and c�
The degree deg�h� of h is at most s� so we are �nished if h is not the

zero�polynomial� If h were the zero�polynomial� the coe�cient b� of x
s would

be zero� Then� for � � k � s� �� we would have

h��auk��� � bkuk��auk�� ! auk�
s��Y
j � �
j 	� k

��auk�� ! auj���

� ��

From u� � � and � � k � s � � � p� we conclude that uk 	� �� For i 	� j in
Zp� we have ui 	� uj � Therefore �auk�� ! auk 	� � and

�auk�� ! auj�� 	� � �j � �� � � � � s� �� j 	� k��

With this� all terms of h��auk��� � � except bk are nonzero� Thus� for
� � k � s � �� we have bk � �� We get that the vector b � �b�� � � � � bs��� is
equal to the zero vector �� which contradicts the fact that we have chosen
b � Zs

p n f�g in the �rst place� So h is not the zero�polynomial� �

������� The avoidance of hyperplanes by the s�dimensional points of
an ICG does not strictly imply the absence of long�range correlations� We
show at least the absence of critical distances for reasonably small shifts s�

Proposition ��� Let ICG�p� a� b� u�� be a full period ICG� Then any hyper�
plane in Z�

p contains at most two of the points

�un� un�s� �� � n � p�

for which un� un��� � � � � un�s�� are all nonzero�

Proof� We will proceed as in the proof of Proposition ���� Without
loss of generality� we assume u� � �� Since the sequence is purely periodic
with period p� we can assume s � p� Moreover� to avoid trivialities� let
� � s � p�







The proposition states that any hyperplane de�ned by b � �b�� b�� �
Z�
p n f�g and c � Zp contains at most two points from

P �� f�un� un�s� � � � n � p� � 	� fun� un��� � � � � un�s��gg
�

n
�P ��x�� P s�x�� � x � Zp n f�au�� � � � ��aus��g

o
�

A point �P ��x�� P s�x�� from P lies on the hyperplane de�ned by b and c if

b�P
��x� ! b�P

s�x�� c � ��

Lemma ��� holds for the coordinates of every point from P � so the above
condition translates to

b�x! b�us
x! aus
x ! aus��

� c � ��

Clearing denominators� we get that x is a root of the polynomial

h�x� � �b�x� c��x! aus��� ! b�us�x! aus�

over Zp� Since deg�h� � 
� h has at most 
 roots in Zp and therefore at
most 
 roots in Zp n f�au�� � � � ��aus��g 	 if it is not the zero�polynomial�
Suppose h were the zero�polynomial� Then the coe�cient b� of x� would

be zero� Moreover� we would have

h��aus��� � b�us��aus�� ! aus�

� ��

As before� this would yield that b� is zero� too� We would get that b� which
was chosen from Zs

p n f�g� is equal to �� This is a contradiction� so h is not
the zero�polynomial� �

��� EICG

������� The last generator we will study in detail is the explicit inversive
congruential generator� It uses the same inversion function as the ICG does�
but it is a nonrecursive generator�


�



De�nition ��� Let p be a 
large� prime and let a� b� n� � Zp� The explicit
inversive congruential generator� EICG� for short� with parameters p� a� b�
and n� de�nes a sequence �un�n�� in Zp by

un �� a � �n� ! n� ! b �n � ��
and a sequence �xn�n�� of random numbers in ��� �� by

xn ��
un
p

�n � ���

�����
� Choosing parameters p� a� b� and n� to obtain the maximal
possible period length is particularly easy� If only p is prime and a 	� �
in Zp� any choice of b and n� gives an EICG with period p producing
fu�� � � � � up��g � Zp� The reason for this is that due to the group structure
of Zp� the function f�n� �� a � �n� ! n� ! b �being composed of bijective
functions on Zp� is itself a bijection on Zp� Hence� for � � n � p� the re�
sulting values f�n� � un are all distinct� For n � p� we have n mod p � n�

for some n� � Zp� and hence un � un� � In the following� we only consider
maximal period EICGs� For a � Z�

p and b� n� � Zp� we denote the sequence

�un�
p��
n�� by eicg�p� a� b� n�� and the sequence �xn�

p��
n�� by EICG�p� a� b� n���

������� Since virtually any choice of parameters de�nes a full period
EICG� there seems to exist quite a lot of di�erent EICGs for a given prime
modulus p� We will see that this is not exactly true� First of all� for a 	�
�� the EICGs EICG�p� a� b� �� and EICG�p� a� b� n�� di�er only by a cyclic
permutation� Therefore� considering the totality fx�� � � � � xp��g produced
by EICG�p� a� b� n��� we can always assume n� � ��

Next� we show that one of the EICG�s parameters is redundant���

Lemma ��� Let a � Z�
p be �xed� For any b � Zp� we have

eicg�p� a� b� �� � eicg�p� a� �� ab��

Conversely� for any n� � Zp� we have

eicg�p� a� �� n�� � eicg�p� a� n�a� ���

��The idea for this stems from Karl Entacher
s observation that the ��dimensional
scatter�plots of two EICGs with the same p� a� and n� but di�erent values of b look
exactly alike� The same idea is implicitly contained in Niederreiter
s ���� p����

��



For any choice of b 	� � and n� 	� �� the resulting eicg�p� a� b� n�� di�ers from
eicg�p� a� �� �� by just a cyclic permutation� and any cyclic permutation of
eicg�p� a� �� �� is equal to eicg�p� a� b� �� for some b� The reason we introduced
the EICG including the redundant parameter in the �rst place is technical
and will soon become apparent�

Proof� All calculations in the proof are carried out in Zp� Let a � Z�
p�

b � Zp� let �un�
p��
n�� � eicg�p� a� b� ��� and �vn�

p��
n�� � eicg�p� a� �� ab�� With

this� we have

u� � a � ��� ! b

� b

� a�ab� ! �

� v��

Note that un can be computed recursively as un � un�� ! a and the same
holds for vn� too� So both the un and the vn depend on their predecessors by
a recursion of order �� We get u� � v� and� inductively� �un�

p��
n�� � �vn�

p��
n���

This proves the �rst part of the lemma�
Proving the second part is equally elementary� �

Finally� there is an obvious relation between the sequences eicg�p� a� �� ��
and eicg�p� �� �� ���

Lemma ��� Let a � Z�
p� The sequence eicg�p� a� �� �� is obtained by select�

ing every a�th element from eicg�p� �� �� ���

Remark� As we did for the LCG and ICG� we implicitly assume that the
index n of the numbers xn and un produced by an EICG are reduced modulo
p� Hence selecting every a�th element from eicg�p� �� �� �� � �un�

p��
n�� means

selecting u�� uamodp� u�amodp� � � � � u�p���amodp�

Proof� Let �un�
p��
n�� � eicg�p� a� �� �� and �vn�

p��
n�� � eicg�p� �� �� ��� We

have

un � an

� � � �an�
� van�

in Zp� �

With these observations� for any a � Z�
p and b� n� � Zp� the sequence

eicg�p� a� b� n�� is obtained from eicg�p� �� �� �� as follows�

��



� select every a�th element from eicg�p� �� �� ��� and
� to the selected elements� apply a cyclic permutation whose �shift� is
determined by b and n��

������� Lemma ��
 and ��� show that all maximal period EICGs for a
given prime modulus p are closely related� more precisely� they show that ev�
ery EICG�p� a� b� n�� is obtained from EICG�p� �� �� �� by selecting and then
rotating a subsequence of equal stride� In this sense� for a given prime p�
the corresponding EICGs are linearly related�� to each other� This observa�
tion gives us a new way to look at the s�tuples un � �un� un��� � � � � un�s���
obtained from an eicg�p� a� �� �� � �un�

p��
n���

The i�th coordinate un�i of un is just the n�th element of the
sequence eicg�p� a� ia� �� � �un�i�

p��
n���

The result we are about to state concerns a more general form of s�tuples�
We consider the s EICGs

�u�i�n �
p��
n�� � eicg�p� ai� bi� �� �� � i � s�

with ai � Z�
p to construct the s�tuples

un �� �u
���
n � � � � � u�s���n � �� � n � p��

The following result for these general s�tuples is due to Niederreiter �
���

Proposition ��� If a�b�� � � � � as��bs�� are mutually di�erent in Zp� then
any hyperplane in Zs

p contains at most s of the un whose coordinates are
nonzero�
If the hyperplane contains �� then in contains at most s� � of these points�

This is the strongest form of nonlinearity we have encountered so far� take

the sequence eicg�p� �� �� �� � �un�
p��
n�� and form s new sequences �u

�i�
n �

p��
n���

each by selecting and then rotating an equal�strided subsequence of �un�
p��
n���

If only the s new sequences are all formed in a di�erent way��� the resulting
s�tuples un avoid the hyperplanes in Z

s
p �except for at most s points which

��Refer back to De�nition ��� for the cause of this linear relationship�
��This is what the condition on a�b�� � � � � as��bs�� in Proposition ��� translates to�

�




are excluded from the proposition�� The same considerations as in �������
apply to these excluded points�

Proof� We will proceed as we did in the proof of Proposition ����
Throughout this proof� all calculations are performed in Zp� Let the
a�b�� � � � � as��bs�� be mutually di�erent�

A hyperplane Hb�c in Zs
p is uniquely identi�ed by a vector b �

�b�� � � � � bs��� � Zs
p n f�g and a scalar c � Zp� Due to the de�nition of

the u
�i�
n � the coordinates of un are nonzero if and only if

n 	� f�a�b�� � � � ��as��bs��g �

For such n� we have un � Hb�c if and only if

� � c�
s��X
i��

biu
�i�
n

� c�
s��X
i��

bi
ain! bi

�

Clearing denominators� we get that n is a root of the polynomial

h�x� � c
s��Y
i��

�aix! bi��
s��X
i��

bi

s��Y
j � �
j 	� i

�ajx! bj��

If c 	� �� then h is a nonzero polynomial�	 of degree s over Zp� Since
such h has at most s roots in Zp� the hyperplane Hb�c contains at most s of
the un with n 	� f�a�b�� � � � ��as��bs��g�
If c � �� i�e� if � � Hb�c � we get

h�x� � �
s��X
i��

bi

s��Y
j � �
j 	� i

�ajx! bj��

��To avoid trivial sequences� we assumed all the ai are nonzero in �������� Therefore the
coe�cient of xs in the above equation is nonzero if c is�

��



whose degree is at most s � �� It remains to show that h is not the zero�
polynomial� b is not the zero�vector� so one of its coordinates is nonzero�
For bk 	� �� we have

h��akbk� � �bk
s��Y
j � �
j 	� k

��ajakbk ! bj�

� bk

s��Y
j � �
j 	� k

aj�akbk � ajbj��

bk is nonzero by the choice of k and the aj are all nonzero by assumption�
�nally� the terms �akbk � ajbj� were all assumed to be nonzero� so h is not
the zero�polynomial� �

������� With Proposition ���� it is fairly obvious that the points
�xn� � � � � xn�s��� produced by the EICG�p� a� �� �� � �xn�

p��
n�� have no lat�

tice structure� Applying the proposition to the special case

ai � a �� � i � s��
bi � i � a �� � i � s�

yields that the points xn � �xn� � � � � xn�s��� avoid the hyperplanes in R
s

�with s exceptions�� The restriction to EICG�p� a� �� �� does not really mat�
ter� The sequence EICG�p� a� �� �� di�ers from EICG�p� a� b� n�� just by a
cyclic permutation and so do the corresponding s�tuples�

������� In a similar vein� Proposition ��� is used to prove the absence
of critical distances in the points �xn� xn�s� formed from EICG�p� a� �� �� �
�xn�

p��
n��� For any

�
 � � s � p� the special case

a� � a� a� � a�

b� � �� b� � s � a

yields that the points �xn� xn�s� avoid the lines in R� �with just two points
being excluded from the proposition��

�
As before� the case s � � is trivial and the case s � p can be reduced to s� � p with
s� � s mod p�

��



With this� the EICG does not exhibit the special kind of of long�range
correlation inherent to the LCG� Although a similar result was shown for
the ICG in Proposition ���� the present result for the EICG is stronger� For
an ICG� all except s of the points �xn� xn�s� avoid the lines in R

�� for an
EICG� we have the same for all but just two of these points�

��� Other generators

������� So far� we have presented three generators in detail 	 the LCG being
one of the oldest and the most widely used� and the ICG and EICG being
new generators� These three types were chosen because the LCG�s defects
are thoroughly explored and because the inversive generators can be proven
to lack just these defects��� A number of other random number generators
in use today had to be excluded from this text��� Many of them have
both theoretically and practically desirable as well as undesirable properties
which� though sometimes di�erent in the details� are similar to those we
encountered so far� We refer the reader to the surveys ���� ����� ����� �����
�
��� ����� or ����� A more detailed discussion of speci�c random number
generators is given by A*erbach in ��� Chapter ��� Knuth in ���� Section
��
�� and ��
�
�� Niederreiter in �
�� Chapter �� � 	 ���� Ripley in ���� Section

�
� 
��� and 
���� and Weingartner in ������

��Regrettably� we know of no exploration of the defects inherent to inversive generators
�which do of course exist� see Chapter � and ��� We wonder what they are and for which
sorts of simulation they might be considered relevant �in the sense of Section �����

��The main reason for this is the fact that we have limited our study to those generators
for which the most qualitative results were available�

��



Appendix A

Expectation and convexity

A�� The idea

�A����� Most introductory textbooks on probability note that the expec�
tation of certain random variables �as� say� events� can be pictured as the
barycenter or center of gravity obtained by distributing mass among the
possible values proportional to their probabilities�

The center of gravity of a �nite number of points is usually de�ned as
follows��

De�nition A�� Let x�� � � � �xn�� be points in Rs� If a total mass of � � �
is distributed among them such that xi is assigned the mass �i � �� then

x ��
�

�

n��X
i��

�ixi

is the corresponding center of gravity of the points x�� � � � �xn���

It is clear that the center of gravity x does not change when we replace �
by ��� � � and �i by �i��� hence we can assume without loss of generality
that � �

Pn��
i�� �i � �� Doing so� the distribution of mass becomes a prob�

ability distribution and the center of gravity x becomes the corresponding

�For our purpose� it su�ces to use this special case of the more general center of gravity
as de�ned by Leichtwei& in �"�� De�nition �����

��



expectation� There is yet another name for this x� in the theory of convex
sets� it is called a convex combination of the points x�� � � � �xn���

For a �nite number of points� we have found three concepts from quite
di�erent areas which all denote the same thing� the physical concept of �cen�
ter of gravity�� the probabilistic concept of �expectation�� and the geometric
concept of �convex combination�� In this chapter� we investigate the extent
of this mutual equivalence�

�A���
� The set of all possible convex combinations which can be formed
from a set A of points is called the convex hull of A�

De�nition A�� For A � Rs� the set

convA ��

�
n��X
i��

�ixi � n � �� xi � A� �i � ��
n��X
i��

�i � �

�

is called the convex hull of A�

Suppose A contains only a �nite number of points� Then there are two
additional interpretations of convA besides the geometric one we used to
de�ne it� convA is the set of all possible centers of gravity obtained from
all conceivable distributions of mass among the points in A� and convA is
the set of all expectations a random variable with values in A can assume�

With the identi�cation of �center of gravity� and �expectation� in mind
and recalling the fact that even more general probability measures can be
viewed as �distribution of mass�� one might suspect this result holds also for
more general sets�

Let A � Rs and x � Rs� There is a probability distribution
on A such that x is the corresponding expectation if and only if
x � convA�

Before we set out to prove it� we develop a more formal representation of
this statement in the next section�

��



A�� The formal statement

�A�
��� Let �+�A� be a measurable space and let
X � + �
 Rs

� ��
 �X����� � � � � Xs������

be measurable� For a probability measure � on �+�A�� let
E��X� �� �E��X��� � � � � E��Xs����

be the expectation of X with respect to �� Finally� let

M �� fprobability measures � on �+�A� such that E��X� � Rsg �
E �� fE��X� � � � Mg �
C �� convX�+��

With these conventions� we can express our claim from �A���
� as

Proposition A��

E � C�

Remark� Since the set C does not depend on the 	�algebra A on +� we
conclude that the set E of possible �nite expectations of X is independent
of A�

�A�
�
� The idea for Proposition A�� is derived from De Finetti�s �The�
ory of Probability� ����� in Section ��� of his book� he notes that E � C�
i�e� that E is the closure of C� This is due to the fact that De Finetti uses
a concept of probability measure which must be �nite� but not necessarily
	�additive� The most widely accepted notion of probability measure due to
Kolmogorov ���� which we use in this text must be 	�additive� Due to the
requirement of 	�additivity� we get that E equals C instead of C�
To see that the di�erence between �nite�additive measures and 	�

additive measures is responsible for getting E � C and E � C� respectively�
consider the following example� Let X be a real�valued random variable
and let ��� �� be the set of its possible values�� For �nite�additive measures�

�This is X � ' ����� �� is measurable with respect to some ��algebra on ' and the Borel
��algebra on ��� ��� and X�'� �������

�




we have E � ��� �� due to ���� Section ���� and� for 	�additive measures� we
claim that E � ��� ���
Every number y ���� �� is the expectation of a point measure concentrated
on y� Since each such point measure is 	�additive� the relation E � ��� ��
holds for 	�additive probability measures�
Now suppose there is a 	�additive probability measure � with E��X� � �
�This is the only case which needs consideration� Since X is positive� the
expectation of X cannot be negative� and expectations � � are handled
analogously�� For any positive integer n� we have

� � E��XjX � ��n�P��X � ��n� !

E��XjX � ��n�P��X � ��n��
which implies� that

P��X � ��n� � ��fX � ��ng� � ��
We get a sequence of measurable sets fX � ��ng with�

n��

fX � ��ng � fX � �g�

Each of the events fX � ��ng has measure �� but the limit fX � �g has
measure �� Thus � is not continuous from below� On the other hand� we
have assumed that � is 	�additive� which implies continuity from below�
Since this is a contradiction� we conclude that E��X� � � is impossible�
The point of all this is the following� a �nite�additive measure is 	�additive
if and only if it is continuous from below� So the di�erence between the
�nite�additive and 	�additive notions of �measure� concerning E is that 	 in
this example 	 we get E � ��� �� in the �nite�additive and E ���� �� in the
	�additive case�

�A�
��� We expected a short search through the literature would cer�
tainly reveal a proof of Proposition A�� or some similar statement� We were
astonished to �nd none of these� The best we can come up with are two
rather unsatisfying references� The �rst is Leichtwei, ���� Satz ����� where
a special case of Proposition A�� is shown� Second� Stoelinga apparently�

�X is nonnegative and so are both of the conditional expectations E��Xj � � ��� Since the
probabilities P��� � �� are nonnegative too� both expressions in the sum above must be zero�
On the other hand� we have ��n � E��XjX � ��n�� which implies P��X � ��n� � ��

�According to ��� Section ����� We would like to thank Johann Linhart for providing
us with these references�

��



proved a special case from a geometric point of view in his Ph�D� thesis ���
��
However� we were unable to locate his work in time� moreover� locating his
work would not have been su�cient either since it is in Dutch�

A�� Some utilities

�A����� Before we prove Proposition A��� we recall some notions and lem�
mata from the �elds convex geometry and measure theory�

For two points a � �a�� � � � � as��� and b � �b�� � � � � bs��� in R
s� we denote

their inner product
Ps��

i�� aibi by �a�b� �
By H � Hn��� we denote the hyperplane de�ned by the vector n � Rs n f�g
and the constant � � R�

Hn�� �� fy � Rs � �n�y� � �g �
By H� and H�� we denote the closed half�spaces de�ned by the hyperplane
H � this is

H�
n�� �� fy � Rs � �n�y� � �g

and H�
n�� is de�ned analogously�

Let x � Rs and A � Rs� A hyperplane H is said to separate x and A if

A � H�

and
x � H��

or vice versa� We say that Hn�� strongly separates x and A if there is an
� � � such that both Hn���� and Hn���� separate x and A� Finally� we
say that x and A are �strongly� separable if there is a hyperplane which
�strongly� separates x and A� Note that if x and A are separable� then

�n � Rs n f�g 
a � A � �n� a� � �n�x� �

If x and A are strongly separable� then the same statement as above with
just the ��� replaced by ��� holds�

De�nition A�� C � Rs is convex if


x�y � C 
� � � � � � �x! ��� ��y � C�
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Lemma A�� Let A � Rs be convex and let x � Rs�

�� If x 	� A� then x and A are strongly separable�


� If x � �A� then x and A are separable��

This lemma is a standard result from convex geometry stated in a form
suitable for our purpose� Part � is a consequence of Schneider ���
� Theorem
����� and ������ and Part 
 is a consequence of ���
� Theorem ����
��

Lemma A�� Let A � Rs� Then

convA �
�

C � Rs is convex and
A � C

C

and
convA is convex�

For a proof of this� see ���
� Theorem ����
��

Lemma A�� Let T � Rs 
 Rt be linear and A � Rs� Then

convT �A� � T �convA��

Proof� First� we show that convT �A� � T �convA�� We have A �
convA and therefore

T �A� � T �convA��

Observe that T �convA� is convex since T is linear	� Thus T �convA� is a
convex superset of T �A�� and Lemma A�
 implies

convT �A� � T �convA��

�By �A� we denote the boundary of A� i�e� �A �� A nA�
�Let y��y� � T �convA� and � � � � �� Then there are x��x� � convA such that

y� � T �x�� and y� � T �x��� Since T is linear and convA is convex� we get

�y� # ��
 ��y� � T ��x� # ��
 ��x��

� T �convA��

���



Next� we show T �convA� � convT �A�� Let y � T �convA�� Due to the
de�nition of convA� there is some �nite number of points x�� � � � �xn in A
and there are nonnegative numbers ��� � � � � �n whith sum up to � such that

y � T �
n��X
i��

�ixi�

�
n��X
i��

�iT �xi��

The points T �xi� all lie in T �A�� Hence y is a convex combination of points
in T �A�� which implies y � convT �A�� �

Lemma A�� The convex hull of a A � Rs is independent of the choice of
the basis of Rs�

Proof� Suppose we choose two bases ofRs� Let T be the corresponding
coordinate transformation �which is of course linear and bijective�� Let A
be the representation of a subset of Rs with respect to the �rst basis and
A� be the representation of the same set with respect to the second basis�
this is

T �A� � A��

With Lemma A��� we get

T �convA� � convA��

and 	 since T�� is linear� too 	

T���convA�� � convA�

�

Lemma A�� Let �+�A� �� be a measure space and let

h � + �
 �����
be measurable� Then Z

hd� � �
and Z

hd� � ��� h � � almost everywhere�

��




This lemma is a standard result of measure theory and is easily derived
from� say� ���� Corollary 
����� and Proposition 
������

Lemma A�
 Let �+�A� �� be a measure space and let f� g be real�valued
��integrable functions on +� Then

f � g ��
Z
fd� �

Z
gd�� and

f � g�

Z
fd� �

Z
gd� �� f � g almost everywhere�

Proof� Let �+�A� ��� f � and g be as demanded in the lemma and let
h �� g � f � Observe that h is real�valued� nonnegative� and ��integrable�

For the proof of the �rst implication of Lemma A��� let f � g� which
implies h � �� We can apply the second part of Lemma A�� to derive

R
hd� 	�

�� Due to the �rst part of Lemma A��� the integral of h is nonnegative� We
have Z

hd� � ��

which is equivalent to
R
fd� �

R
gd��

For the proof of the second implication of Lemma A��� let f � g andR
fd� �

R
gd�� This means h � � and R hd� � �� Using the second part of

Lemma A��� we get h � � almost everywhere or� equivalently� f � g almost
everywhere� �

A�� Proof of the formal statement

Proof of Proposition A��� We conduct the proof in three steps�

C � E � ���

E � C� �
�

E � �C � C� ���

With these three inclusions� it is easy
 to derive E � C� Observe that �
�
can be written in the form

E � C � �C�

We would like to thank Stefan Wegenkittl for pointing out this simpli�cation of our

original argument�
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Intersecting both sides of this with E yields
E � �C � E� � ��C � E��

With this� E is contained in the union of two sets� each of which is in turn
contained in C� C � E is contained in C by de�nition and �C � E is because
of ���� Therefore E itself is contained in C� On the other hand� ��� states
that C is contained in E � Hence the two sets are equal�

Proof of ���� We show that E is a convex superset of X�+�� This and
Lemma A�
 imply ����

Let x� � X���� � X�+�� We de�ne a measure � as the point measure
concentrated at x��

� � A �
 ��� ��

A ��
 �A�����

It is easy to see that � is a probability measure on �+�A� �it is a nonnegative�
	�additive functional on A with ��+� � ��� For this measure� we have

X � x� ��almost everywhere�

and therefore
E��X� � x��

Thus � � M and x� � E � This proves that E is a superset of X�+��
Let ��� �� � M with E���X� � x� and E���X� � x�� and let � � � � ��

To prove that E is convex� we have to show that �x� ! �� � ��x� is in E �
For this� we de�ne a measure � as

� � A �
 ��� ��

A ��
 ����A� ! ��� �����A��

It is easy to see� that � is a well�de�ned probability measure on �+�A��
For a step�function f � we have

�

Z
fd�� ! ��� ��

Z
fd�� �

Z
fd��

�For A � A� the numbers ���A� and ���A� are both in ��� ��� Since ��A� is a convex
combination of these numbers� it is in ��� �� as well� The ��additivity of �� and �� is
simply inherited by �� Finally� since ��'� � �� # ��
 ��� � �� � is indeed a probability
measure on �'�A��

���



Let f be an function which is both ��� and ���integrable� Then f can be
represented as the point�wise limit of a sequence �fn�n�� of step�functions�
Moreover� the� say� ���integral of f is the limit of the ���integrals of the step
functions fn� This yields

�

Z
fd�� ! ��� ��

Z
fd�� � � lim

n��

Z
fnd�� ! ��� �� lim

n��

Z
fnd��

� lim
n��

�
�

Z
fnd�� ! ��� ��

Z
fnd��

�

� lim
n��

Z
fnd�

�

Z
fd��

X is both ��� and ���integrable� and so

E��X� � �E���X� ! ��� ��E���X�

� �x� ! ��� ��x��

Since E��X� � Rs� we have � � M and �nally E��X� � E �
Proof of ���� We assume EnC 	� � and show this gives a contradiction�

Let x � E��X� � E nC� Since x is not contained in the closure of the convex
set C� we can apply Lemma A��� Part � to conclude that C and x are strongly
separable� There is an n � Rs n f�g with


c � C � �n� c� � �n�x� �

The possible values X�+� of X are a subset of C� so
�n�X� � �n�x� �

The mapping �n�X� �
Ps��

i�� niXi is measurable� Because � � M� i�e� all
the Xi are ��integrable� so is �n�X� � We have two integrable functions�
�n�X� and the constant function �n�x� � where one is always smaller
than the other� Lemma A�� implies

E�� �n�X� � � �n�x� �

Conversely� using the fact that E� is a linear functional� we get

E�� �n�X� � � �n� E��X��

� �n�x� �

���



E�� �n�X� � is simultaneously both smaller than and equal to �n�x� �
which is a contradiction� Hence E n C � � and E � C�

Proof of ���� For this �nal part� we use induction on the dimension s�
For both parts of the proof �the cases s � � and s��
 s�� we use essentially
the same argument as presented in �A�
�
� to point out that the di�erence
between �nite�additive and 	�additive measures is� when E is concerned� just
the di�erence between C and C� Instead of directly using the 	�additivity
or the continuity from below as in �A�
�
�� we use Lemma A�� here� The
proof can be conducted using continuity from below� but it is easier with
the lemma�

Let s � �� Recall the de�nition of an interval� an interval� I � R is a
set which with two points contains all the points in between as well� Since
this is the one�dimensional case of the general De�nition A�� of a convex
set� a subset of R is convex if and only if it is an interval�
If E ��C is empty� then ��� trivially holds� Now suppose it is not empty and
choose x � E��X� � E � �C� We have to show that x � C�
Because x � �C and C is convex� x is an end�point of the interval C� This
interval contains all the values X�+�� so we can conclude that either X � x
or X � x� We apply the second part of Lemma A�� to conclude

X � x ��almost everywhere�

Thus there is at least one � � + with X��� � x� which means

x � X�+� � C�

For the step s� �
 s� let s � � and assume ��� holds for all dimensions
smaller than s� As before� only the case E � �C 	� � is of interest�
Let x � E��X� � E � �C� Due to Lemma A��� Part 
� we can separate x
and C by a hyperplane Hn��� Since X�+� is a subset of C� we have� say�

�n�X� � �n�x� �

and 	 just as in the case s � � 	 we conclude

�n�X� � �n�x� ��almost everywhere�

�In the sense that intervals are subsets of R of the form �a� b�� �a� b�� �a� b�� or �a� b� for
a� b � R 	 f
���g and a � b�

���



This means that the s�dimensional random quantity X is almost certainly
contained in the hyperplane Hn��� We will use this to apply the induction
hypothesis to an �s � ���dimensional space� the hyperplane� Before doing
so� we have to get rid of those possible points of X which do not fall in the
hyperplane�
There is at least one �� � + with �n�X����� � �n�x� � We change X
on a set of measure zero� de�ning

X���� ��

�
X��� if �n�X���� � �n�x� �
X���� otherwise�

The random quantity X� is again ��integrable�

E��X
�� � x� and

�n�X�� � �n�x� �

Now we choose vectors b�� � � � �bs�� which span the hyperplane Hn��� The
set B �� fb�� � � � �bs���ng is a basis ofRs� Let T be the coordinate transfor�
mation from the standard ordered basis fe�� � � � � es��g ofRs toB� which can
be can be uniquely identi�ed with an s� s�matrix��� For any point z � Rs�
we denote its coordinates with respect to B by T �z� � �T��z�� � � � � Ts���z���
Note that the representation of T �Hn��� of our hyperplane with respect to
the new basis is very simple� T �Hn��� is just the set of points whose last
coordinate is equal to Ts���x�� We get

Ts���X
�� � Ts���x��

So the random quantity T �X�� is completely contained in the hyperplane
T �Hn��� and its last coordinate function is constant�
Applying the induction hypothesis to the �s� ���dimensional random quan�
tity �T��X

��� � � � � Ts���X
��� yields��

�T��x�� � � � � Ts���x�� � conv
	
�T��X

������ � � � � Ts���X
������ � � � +
 �

Projecting Rs�� �where we applied the induction hypothesis� onto the hy�
perplane T �Hn���

�� and using Lemma A��� we get

T �x� � convT �X��+���

��Formally� we have T � S��� where the i�th column�vector of S is bi �� � i � s
 ��
and its �s
 ���th column�vector is n�

��T �X�� � �T��X
��� � � � � Ts���X

��� is measurable because X� is measurable and T is
linear �each Ti�X

�� is a linear combination of the coordinate functions X �

j �� � j � s� of
X��� Thus �T��X

��� � � � � Ts���X
��� is measurable and therefore a random quantity�

��The point �y�� � � � � ys��� � R
s�� is projected to �y�� � � � � ys��� Ts���x�� � T �Hn����

���



By Lemma A��� this is equivalent to

x � convX��+��

By de�nition ofX��X��+� is contained in X�+� and so are the corresponding
convex hulls� Hence

x � convX�+� � C�
�

��




Appendix B

Lattices

B�� Basic lattice properties

The de�nition of a lattice was already given in De�nition ��
� In this section�
we present some elementary properties of lattices which we make use of later�

�B����� First� we give an alternative characterization of a lattice in
Proposition B�� and B�
� which are stated according to Gruber and Lekkerk�
erker ���� Section ���� Theorem � and 
��

Proposition B�� An s�dimensional lattice is a discrete subgroup of Rs�

Proof� Let ) be a lattice with basis fb�� � � � �bs��g� Due to the
de�nition of )� we have � � ) and� for x�y � )� x�y is as well in )� Hence
) is an additive subgroup of Rs�

To show that ) is discrete� we consider the �cube�

W ��

�
s��X
i��

tibi � jtij � �
�
�

Then )�W � f�g�� Similarly� for any x � )� we have )� �x!W� � fxg�
�If this set contained a lattice point x �� �� then x would have two di�erent represen�

tations with respect to the lattice basis� one with all integer coordinates and one with at
least one noninteger coordinate� Since the vectors of a lattice basis span Rs� this cannot
be�

���



The �cube� W contains an open sphere� K���� �� fz � jjzjj � �g for some
radius � � �� With this� two lattice points have a distance of at least ��
Hence ) is a discrete set� �

Lemma B�� Let A be a nonempty subset of a discrete subgroup L of Rs�
Then A contains a shortest vector�

�a � A � jjajj � inf fjjbjj � b � Ag �

Proof� Let A be a nonempty subset of the discrete subgroup L � Rs�
Since A is nonempty and since the norm is nonnegative and �nite� the
quantity

� �� inf fjjbjj � b � Ag
is well�de�ned and �nite�
Let us assume that there is no a in A with jjajj � �� Then there exists
a sequence �an�n�� of points in A with decreasing norm�� Because L is
discrete� there is a constant � � � such that any two points in L have a
distance of at least �� In particular� any open sphere

K��an�

of radius � centered at an intersects L only at the point at its center� K��an��
L � fang� In this way� we obtain a sequence of in�nitely many disjoint
spheres �K��an��n�� of the same� positive volume� For any n� we have
jjanjj � jja�jj� so all these disjoint spheres are contained in one big sphere

Kjja�jj�����

centered at the origin� Because jja�jj ! � is �nite� so is the volume of the
big sphere� On the other hand� it contains in�nitely many disjoint spheres�
each of which has the same� positive volume� This implies the volume of the
big sphere to be in�nite and yields a contradiction� �

Proposition B�� Let ) be a discrete subgroup of Rs which is not contained
in an �s� ���dimensional subspace of Rs� Then ) is a lattice�

�Otherwise� W would not be an open set which it certainly is due to the linear inde�
pendence of the s spanning vectors�

�Choose an arbitrary a� from the nonempty set A� Since we have assumed � � jja�jj�
there is an a� � A with � � jja�jj � jja�jj� and so on � � �

���



Proof� Let ) ful�ll the conditions of Proposition B�
� We inductively
choose linearly independent points a�� � � � � as��� and then show that the
lattice spanned by these points is equal to )�

) is a group� so we have � � )� Because ) is not contained in an �s����
dimensional subspace of Rs� ) n f�g is not empty� We choose a� � ) n f�g
such that jja�jj is minimal� Since ) is discrete� Lemma B�� assures that a�
is well�de�ned�

If a�� � � � � ak�� �k � s� have been chosen� we choose ak as follows� ) is
not contained in the k�dimensional subspace �a�� � � � � ak��� spanned by the
a�� � � � � ak��� so we can choose some

b � ) n �a�� � � � � ak����

Let Pk be the parallelepiped spanned by the ai chosen so far and b�

Pk ��

�
k��X
i��

�iai ! �b � � � �i � �� � � � � �
�
�

Since b � Pk � we have

Pk n �a�� � � � � ak��� 	� ��

Because Pk is bounded and ) is discrete� the set

Pk � )

is �nite�� Let ak be that point in Pk�) which has minimal positive distance
from �a�� � � � � ak����

Suppose the a�� � � � � as�� are chosen according to the procedure above�
Since

a� 	� �� and ak 	� �a�� � � � � ak��� �� � k � s��

the ai are linearly independent�
) is a group containing the ai� so it contains any point of the form

Ps��
i�� kiai

�ki � Z� as well� Thus ) contains the lattice spanned by fa�� � � � � as��g� It
�Assume Pk 
 % is in�nite� For 
 � supfjjzjj � z � Pkg� which is of course �nite� the

closed sphere K���� is a superset of Pk� Pk contains ininitely many points of the discrete
set %� each of which can be separated from the rest by a sphere of some �xed radius � 
 ��
This yields the contradiction that K���� contains in�nitely many disjoint spheres of the
same� positive volume�

���



remains to show that there are no other points in )�
Due to the linear independence of the ai� any a � ) can be written as

a �
s��X
i��

tiai �ti � R��

We have to show that the ti are all integers or� equivalently� that the values
ui �� ti � btic are all zero�
Because the group ) contains the lattice spanned by the ai� we have

s��X
i��

uiai � )�

Recall that we have chosen as�� as that point in Ps���) which has minimal
positive distance from �a�� � � � � as���� Together with � � us�� � �� this
implies that us�� is zero� assume us�� � �� the choice of as�� �

Ps��
i�� �iai!

�b � Ps�� yields

s��X
i��

uiai �
s��X
i��

�ui ! us���i�ai ! us���b�

Since ai � )� we get�

s��X
i��

fui ! us���igai ! us���b � Ps�� � )�

Since � � us��� � �� this point would have smaller positive distance from
�a�� � � � � as��� than as��� By the choice of as��� this can not be�
Similarly� the choice of as�� and � � us�� � � imply that us�� is zero� etc�
� � � � We get that us��� � � � � u� are all zero� Finally� u� is zero since otherwise
jja�jj would not be minimal� �

�B���
� From De�nition ��
� it is clear that there is more than one basis
spanning any given lattice� Any lattice basis is transformed to an equivalent
basis by� say� reversing some of its vectors� To characterize which lattice
points can be part of a lattice basis� we need the notion of a primitive set�
which we de�ne according to ���� Section ���� De�nition 
��

�Note that for � � R� we denote the fractional part of � by f�g� i�e� � � b�c# f�g�
where b�c is an integer and � � f�g � ��

��




De�nition B�� A system of k � s linearly independent points b�� � � � �bk��
in an s�dimensional lattice ) is called primitive if

) � �b�� � � � �bk��� �
�
k��X
i��

cibi � ci � Z
�
�

Note that any lattice basis and any subset of a lattice basis is primitive�
moreover� any primitive set of s vectors is a lattice basis� Finally� consider
the case of a set of just one nonzero vector fbg� this set is primitive if the
line�segment joining � and b contains no other lattice point� For the sake
of simplicity� we say that b is primitive if fbg is primitive�
The reason for de�ning the notion of a primitive set of lattice points is

the following statement� which is a slight modi�cation of ���� Section ����
Theorem ��	�

Proposition B�� A set of points of a lattice ) is primitive if and only if
it can be completed to a basis of )�

Proof� If the fb�� � � � �bk��g can be completed to a basis of )� they
are of course primitive since every subset of a basis is primitive� this proves
the �only if��

For the �if��part of Proposition B��� let ) be an s�dimensional lattice and
fb�� � � � �bk��g be primitive� to avoid trivialities� let k � s� It is su�cient
to show the existence of a bk � ) such that fb�� � � � �bk���bkg is primitive�
by repeated enlargement of the primitive set� it will eventually contain s
vectors and therefore be a basis�
Since k � s and ) is a lattice� we can choose some c � ) n �b�� � � � �bk����
Let P be the parallelepiped spanned by the bi and c�

P ��

�
k��X
i��

�ibi ! �c � � � �i � �� � � � � �
�
�

Since c � P� we have
P n �b�� � � � �bk��� 	� ��

By a similar argument as used in the proof of Lemma B��� we see that

P � )
�To avoid introducing intermediate results� the proof is composed of fragments of the

proofs of Theorem � and Theorem � in ���� Section ����

���



is �nite� As the new point bk� we choose that point in P � ) which has
minimal positive distance from �b�� � � � �bk���� It remains to show that
fb�� � � � �bk���bkg is primitive�
The b�� � � � �bk are linearly independent because b�� � � � �bk�� are linearly
independent and bk 	� �b�� � � � �bk����
Let

p � )� �b�� � � � �bk��
It can be written as

p �
kX
i��

tibi

for some reals ti which we will show are integers� To be precise� we show
that the values ui �� ti� btic �� � i � k� are all zero� Since p is an element
of the additive group ) and the btic are integers� the point

q ��
kX
i��

uibi

is in )� As a linear combination of the bi� q is also contained in �b�� � � � �bk��
Finally� since � � ui � �� q is contained in P� too� By the choice of bk � the
scalar uk must be zero
� Hence

q � ) � �b�� � � � �bk����
Since fb�� � � � �bk��g is primitive� the remaining ui �� � i � k� are integers
and therefore are equal to zero� �

We found that a single point n � ) n f�g is primitive if and only if the
line�segment joining n and � contains no other lattice point� For a basis
fb�� � � � �bs��g of )� let n � Ps��

i�� libi� Note that the line�segment joining
n and � contains no other lattice point if and only if the integers l�� � � � � ls��
are coprime� In the following� we generalize this observation�

Proposition B�� Let fb�� � � � �bk��g be a primitive subset of the s�
dimensional lattice )� k � s� and let fb�� � � � �bk��� ck� � � � � cs��g be the
corresponding lattice basis� Let n be some lattice point with

n �
k��X
i��

libi !
s��X
i�k

lici�


Assume uk 
 �� By the same argument as used in the corresponding part of the proof
of Proposition B��� we conclude that the point q � P has a smaller but positive distance
from �b�� � � � �bk��� than bk� This gives a contradiction with the choice of bk�

���



Then
fb�� � � � �bk���ng is primitive

if and only if�

gcd�lk� � � � � ls��� � ��

Proof� First� let d �� gcd�lk� � � � � ls��� and assume that
fb�� � � � �bk���ng is primitive�
If d were equal to �� then all the lk� � � � � ls�� would be zero and n would be
a linear combination of the b�� � � � �bk��� The resulting linearly dependent
vectors b�� � � � �bk���n would not form a primitive set�
If d were greater than �� the lattice point

s��X
i�k

li
d
ci �

�

d
n �

k��X
i��

li
d
bi

would be in �b�� � � � �bk���n�� but its uniquely determined representation as
a linear combination of the bi �� � i � k� and n would require at least a
noninteger scalar for n� In this case� too� fb�� � � � �bk���ng would not be
primitive� Therefore d is equal to ��

Conversely� assume that d � gcd�lk� � � � � ls��� is equal to �� For an
arbitrary lattice point

v �
k��X
i��

wibi ! wn

� ) � �b�� � � � �bk���n��
�Since the gcd is taken over scalars of which some or all can be zero� we brie(y recall

the de�nition of the greatest common divisor as we use it here� For a� c � Z� we say �c
divides a
 or cja if there is a nonzero integer b for which bc � a�

cja � �b � Z n f�g � bc � a�

The greatest common divisor of two integers a� b is de�ned as

gcd�a� b� ��

�
jaj# jbj if a or b is zero�
maxfc � Z � cja and cjbg otherwise�

This means gcd��� a� � gcd�a� �� � jaj and gcd��� �� � �� which is very important for our
usage of gcd to make sense�
The greatest common divisor of more than two integers a�� � � � � an�� is de�ned recursively
by

gcd�a�� � � � � an��� �� gcd�gcd�a�� � � � � an���� an����

���



we have to show that all the wi and w are integers� Recalling the represen�
tation of n� we get

v �
k��X
i��

�wi ! wli�bi !
s��X
i�k

wlici�

In this representation of v � ) as a linear combination of vectors of a lattice
basis� all the involved scalars are integers� In particular�

wli � Z �k � i � s��

Since d � �� at least one of the li �k � i � s� is nonzero� Hence w is rational�
If w is zero� then the above representation of v yields that the remaining wi

�� � i � k� are integers�
If w is nonzero� it can be written as w � p�q for coprime integers p and
q � �� From the wli �k � i � s� being integers� it follows that q divides
every nonzero li� which implies q � d� Since � � q and d � �� we have q � ��
and thus w � Z� From this and the above representation of v� it follows
that the remaining wi �� � i � k� are integers� too� �

�B����� A lattice ) de�nes a set )� of those points n for which �n�p�
is an integer for every p � )� This property identi�es the so�called polar
lattice )�� which we de�ne according to ���� Section ���� De�nition ���

De�nition B�� For a lattice ) in Rs� the set

)� �� fn � Rs � 
p � ) � �n�p� � Zg
is called the corresponding polar lattice�

The notation already implies that )� is a lattice� In fact� we have the
following result� which we state according to ���� Section ���� Theorem 
��

Proposition B�� The polar lattice )� is a lattice�

Proof� Let fb�� � � � �bs��g be a lattice basis of )� Gram�Schmidt
orthogonalization yields vectors b�i �� � i � s� such that

�b�i �bj� � �i�j �� � i� j � s��

We show that the lattice )� spanned by fb��� � � � �b�s��g is equal to )��

���



Let n � )�� Since the b�i span Rs� we can represent n as

n �
s��X
i��

tib
�
i �ti � R��

For the lattice points bi � )� the de�nition of )� yields that

�n�bi� � Z �� � i � s��

Since all the �n�bi� � ti are integers� we have n � )��
Now let n � )�� n is an integer linear combination of the b�i � so

�n�bi� � Z �� � i � s��

A point p � ) is an integer linear combination of the bi� so �n�p� is an
integer� This holds for any lattice point of )� so n � )�� �

B�� Minkowski�reduced lattice bases

�B�
��� The basic problem in lattice basis reduction is described by Gru�
ber ���� p����� as this� given a lattice )� �determine �by means of a suitable
algorithm� a basis �the �reduced� basis� having �nice� geometric or arithmetic
properties�� In this section� we de�ne and discuss a type of reduced basis
whose �nice geometric properties� include that it coincides with the basis of
shortest possible vectors in 
� or ��dimensional lattices�

De�nition B�� A basis fm�� � � � �ms��g of the s�dimensional lattice ) is a
Minkowski�reduced lattice basis 
MRLB� for short� if

jjm�jj � min fjjmjj � fmg is primitiveg � and ���

jjmkjj � min fjjmjj � fm�� � � � �mk���mg is primitiveg �� � k � s���
�

Note that this de�nition requires that the vectors of a MRLB
fm�� � � � �ms��g of ) are ordered by their length� jjm�jj � � � �� jjms��jj�
The notion of a MRLB was introduced before in ���
��� as a basis ob�

tained by successively choosing shortest possible basis vectors� With Propo�
sition B��� any set of basis vectors is necessarily primitive� and vice versa�

���



Therefore� the informal introduction of a MRLB in ���
��� is consistent with
De�nition B���

De�nition B��� which is taken from ���� p������ seems to be quite di�er�
ent from the more technical de�nition of a MRLB as used in the literature
on random numbers �see ��� Section ��
��� De�nition ��� for example�� How�
ever� Proposition B�� shows that our De�nition B�� and that in� say� ��� are
equivalent�

To verify the existence of a MRLB� let ) be the lattice spanned by
fb�� � � � �bs��g� Just as in ���
���� we inductively choose lattice points
m�� � � � �ms�� which are then shown to satisfy De�nition B���
Let M� �� fm � fmg is primitiveg� Since M� is non�empty �b� � M���
Lemma B�� assures that we can choose m� as one of the shortest vectors in
M�� Note that fm�g is primitive�
If fm�� � � � �mk��g has been chosen and is primitive �� � k � s�� let
Mk �� fm � fm�� � � � �mk���mg is primitiveg� By the choice of the mi

�� � i � k�� there is a basis fm�� � � � �mk���nk� � � � �ns��g of )� Since
nk � Mk 	� �� we can choose mk as one of the shortest vectors in Mk�
Again� note that fm�� � � � �mkg is primitive�
Proceeding this way� we end up with fm�� � � � �ms��g being primitive� i�e�
being a basis of )� By the de�nition ofMk and the choice ofmk �� � k � s��
it follows that this basis satis�es De�nition B���

�B�
�
� Unfortunately� a MRLB is not uniquely determined by De�ni�
tion B��� Suppose that fm�� � � � �ms��g is a MRLB of )� Then� obviously�
f�m�� � � � ��ms��g is a MRLB of )� too� Moreover� there may be other
MRLBs for a given lattice�
For � � k � s� both mk and its length depend on m�� � � � �mk��� jjmkjj is
a local minimum depending on the k vectors chosen before� Therefore� even
the existence of two MRLBs fmk � � � k � sg and fnk � � � k � sg of the
same lattice ) with

�jjm�jj� � � � � jjms��jj� 	� �jjn�jj� � � � � jjns��jj� ���

is conceivable� According to Gruber and Lekkerkerker ���� p���
�� this is
impossible for dimensions s � �� for s � �� however� Ryshkov ��
� ��� was
able to prove that ��� can in fact occur by giving a ��dimensional example�

�B�
��� The possibility of ��� in dimensions s � � raises the question of
whether the Beyer�quotient qs �see ��
��� is well�de�ned in general� If the

��




lengths of a MRLB�s vectors are ambiguous in higher dimensions� so may
be the Beyer�quotient which depends on just these lengths� Scanning the
available literature we were profoundly surprised to �nd the problem of the
Beyer�quotient�s uniqueness nowhere addressed let alone answered��

One notable exception is A*erbach� who states that the parallelepipeds
spanned by two MRLBs of the same lattice are always congruent ��Jedoch
sind die von zwei Minkowski�reduzierten Basen desselben Gitters aufgespan�
nten Parallelepipede stets kongruent���� This claim� given in ��� p��
� with�
out further reference or proof� is clearly invalidated by Ryshkov�s counter�
example�
Let ) be the seven�dimensional lattice and let fm�� � � � �m	g and
fn�� � � � �n	g be the two MRLBs of ) given by Ryshkov in ���� such that
��� holds� Furthermore� let A �� fP	

i�� timi � � � ti � �g be the par�
allelepiped spanned by the mi and B that spanned by the ni� If A were
congruent with B� it could be rotated and translated such that the edges of
A coincide with the edges of B�
The numbers �jjm�jj� � � � � jjm	jj� are just the lengths of those edges
of A which start at the origin� in ascending order� More generally�
�jjm�jj� � � � � jjm	jj� are the lengths of the edges of A starting at any �xed
of its vertices��� Similarly� �jjn�jj� � � � � jjn	jj� are the lengths of the edges
starting at any �xed vertex of B� From ���� it follows that A and B are
incongruent�

B�� Covering lattices with parallel hyperplanes

�B����� The goal of this section is to derive a method for computing the
spectral test as introduced in ���
���� the maximal distance or spacing ��
s
of parallel hyperplanes which cover a lattice )�

�B���
� A family H � Hn�C of parallel hyperplanes in Rs is uniquely
de�ned by a nonzero vector n � Rs and a set of scalars C � R�

Hn�C � fHn�c � c � Cg �
�Actually� we found the Beyer�quotient applied in ���� ����� ����� ����� ��"�� and ����� but�

except for the �rst� none of these even address the problem� ��� and ���� actually compute
Beyer�quotients in dimensions well above seven�

��It is easy to see this for �� or ��dimensional parallelepipeds� For the general case� use
induction on the dimension s�

���



We say that Hn�C is a cover of the s�dimensional lattice ) if

) �
�
c�C

Hn�c

and
C is the smallest set with this property�

The second condition serves to avoid covers containing �useless� hyperplanes�
i�e� hyperplanes which contain no lattice point at all�

Let Hn�C be a cover of )� The distance of two hyperplanes H and H �

�or� more generally� the distance of any two nonempty sets in Rs� is de�ned
as

d�H�H �� �� inf
	jjx� yjj � �x�y� � H �H �
 �

The shortest distance of neighbouring hyperplanes in the cover� its spacing�
is

d�Hn�C� �� inf
	
d�Hn�c� Hn�c�� � c� c

� � C� c 	� c�


�

With these conventions� the value of the spectral test for a lattice ) is

�


s
� sup fd�Hn�C� � Hn�C is a cover of )g �

�B����� Observe that� in a cover of a lattice� the distance of a hyperplane
H to its nearest neighbouring hyperplane H � is independent ofH in the sense
that the distance to the nearest neighbour is the same for any hyperplane�
Although this is quite obvious by intuition� we prove it as

Lemma B�� Let Hn�C be a cover of the lattice )� Then C is a group�

Proof� Let c� c� � C� Hn�c contains at least one lattice point x and
Hn�c� contains at least one lattice point x

�� The lattice ) is a group� so the
point y �� x � x� is a lattice point� too� y is contained in Hn�c	c� and�
therefore c� c� � C� �

The group structure of C yields

d�Hn�c� Hn�c�� � d�Hn��� Hn�c�c���

and hence
d�Hn�C� � inf fd�Hn��� Hn�c� � c � C n f�gg �

�
�



With this� we can move a step towards the actual computation of ��
s
in��

Lemma B�� Let Hn�C be a cover of )� Then

d�Hn�C� � �

jjnjj inf fjcj � c � C n f�gg �

Note that we cannot replace the above in�mum over C nf�g by a minimum�
For ) �� Z�Z� n �� �p
� ��� and C �� fa!bp
 � a� b � Zg� the set Hn�C is
a cover of )� However� C is dense�� in R� and therefore the spacing d�Hn�C�
is equal to ��

Proof� Let c � C n f�g� Due to the group structure of C� we may
assume c � �� For any x � Hn�� and any y � Hn�c� there is jjx � yjj �
jj�x� x�� �y� x�jj and y� x is contained in Hn�c� So

d�Hn��� Hn�c� � inf fjjyjj � y � Hn�cg �
Any y � Hn�c can be represented as the sum of two vectors y � m ! y��
where

m ��
c

jjnjj�n

is contained in Hn�c and y� � Hn��� Note that� given m� y� is uniquely
determined by y� We get

jjyjj� � �y�y�

� �m! y��m! y��

� jjmjj�! jjy�jj� ! 
 �m�y��

� jjmjj�! jjy�jj� ! 
 c

jjnjj� �n�y�� �

Since y� � Hn��� the last term is equal to zero� Hence

jjyjj� � jjmjj��
This observation and the triangle inequality yield

jjmjj � jjyjj � jjmjj! jjy�jj�
��Assuming C � Z� this lemma is similar to ���� Equation ������
��This is an immediate consequence of Kronecker
s Approximation Theorem ���� ����

see also Hlawka ���� p����

�
�



Note that y� � Hn�� is not only uniquely determined by y� but any such y
�

uniquely determines a point y �m!y� in Hn�c� The in�mum of jjyjj taken
over all points in Hn�c is therefore equal to jjmjj� Hence

d�Hn��� Hn�c� � jjmjj
�

c

jjnjj�

which means that d�Hn�C� is equal to the in�mum of all values of the form
c

jjnjj for positive c � C� �

The value of the spectral test for a lattice ) can thus be written as

�


s
� sup

�
�

jjnjj inf fjcj � c � C n f�gg � Hn�C is a cover of )
�
�

�B����� In this formula for ��
s� we consider all covers of a lattice� We
now show that it is su�cient to restrict to covers of a certain kind which are
uniquely de�ned by the lattice itself�

Proposition B�
 Let Hn�C be a cover of )� Then

d�Hn�C� � �

if and only if
�n � )� is primitive

for some � � ��

Proof� Let Hn�C be a cover of )� Observe that� for any � � �� the
de�nitions of a cover and of its spacing yield that

Hn�C � H	n�	C�

For the �if��part� let c� �� d�Hn�C� � �� Since C is a group and c� is
its smallest positive element �Lemma B�
 and B���� we have C � c�Z� This
and the above observation yield

Hn�C � Hn�c�Z
� H��c�n�Z�

�





Let � �� ��c� �which is� of course� positive�� Since Z � f ��n�p� � p � )g�
the vector �n is in the dual lattice )��
Let ��n � )� � ��n�� To prove that �n is primitive� we have to show that
� is an integer� Since ��n � )�� ���n�p� is an integer for any p � )�
Because c� is the smallest positive element in the discrete group C � c�Z�
there is a p� � ) such that �n�p�� � c�� The choice of � and p� yield

���n�p�� � �
�

c�
�n�p��

� ��

so � is an integer�

For the �only if��part� let �n � )� be primitive� Then Hn�C � H	n�	C

is a cover of ) and �C is a subgroup of Z� Since f�g 	� �C �otherwise� the
whole lattice ) would be contained in just one hyperplane H	n��� which is
impossible�� it contains a smallest nonzero element� With Proposition B���
we get

d�Hn�C� � d�H	n�	C�

�
�

jj�njj inffj�cj � �c � �C n f�gg
� ��

�

There is� in fact� more information in the above proof than stated in
Proposition B��� In the �if�� part� we assumed that d�Hn�C� � � and con�
cluded that

Hn�C � H	n�Z

for �n � )� being primitive� Note that the spacing of this cover is
d�H	n�Z� � ��jj�njj� In accordance with Knuth ���� Section ������ and
Ripley ���� Theorem 
����� we can conclude�

The value of the spectral test for a lattice ) is

�


s
�

�

jjmjj�

where m is the shortest nonzero vector in )��

�
�



B�� Linear transformations of lattices

�B����� Throughout this section� let

) �

�
s��X
i��

kibi � ki � Z
�

be the s�dimensional lattice spanned by the bi and� for s � t� let

T � Rs �
 Rt

be linear and surjective� This mapping is uniquely determined by a t � s�
matrix which we also call T � The image of ) under T is

T) �

�
s��X
i��

kiTbi � ki � Z
�
�

In this section� we give a su�cient condition on T for T) to be a lattice�

�B���
� The set T) does already look quite similar to a lattice� it is
made up of all integer linear combinations of the vectors Tbi� The only
problem is that these s vectors are not necessarily linearly independent in
Rt and some of them may even be equal to ��
For another reason why T) does not need to be a lattice� recall our observa�
tion from �B������ the set C �� fa ! b

p

 � a� b � Zg is dense in R� Setting

) �� Z�Z and T � ���p
� yields that T) � C is dense in R� and therefore
cannot be a lattice�

�B����� In some cases however� one of them being of special interest
when studying congruential random number generators� T) is a lattice�

Proposition B�� If every row�vector of T is in )� 
up to a constant scaling
factor�� then T) is a lattice�

Proof� Let every row�vector ni �� � i � t� of T be in )� �up to
a constant scaling factor�� Without loss of generality� we assume that the
scaling factor is �� so ni � )�� We show that T) is a discrete subgroup of
Rt which is not contained in a �t � ���dimensional subspace of Rt� With
this and Proposition B�
� T) is a lattice�

�
�



From the above representation of T)� it is clear that with any two points
x and y� it contains x� y as well� Hence T) is a group�

) is a lattice and therefore not contained in an �s� ���dimensional sub�
space of Rs� Since T is surjective� TRs is equal to Rt� Using the linearity
of T � we get that T) is not contained in a �t � ���dimensional subspace of
Rt�

For a basis fb�� � � � �bs��g of )� we have

Tbi �

�
B�

�n��bi�
���

�nt���bi�

�
CA �� � i � s��

All the nj are in )
�� so all the Tbi are in Z

t� The set T) is made up of all
integer combinations of the Tbi� so T) � Zt� Finally� since Zt is discrete�
so is T)� �

�B����� We have to stress that the given condition for T) being a lattice�
although su�cient� is far from being necessary� For example� consider the
lattice ) �� Z� Z an the bijective linear transformation de�ned by

T ��

�
�

p



� �p


�
�

Since
p

 is irrational� the row�vectors of T cannot be scaled to lie in )�nf�g�

However� we will see that T) is a lattice�

Using the same argument as in the proof above yields that T) is a
subgroup of R� which is not contained in a one�dimensional subspace of R��
It remains to show that T) is discrete�
Observe that for any k � Z� we have

Tf�k� l� � l � Zg � f�k ! l
p

� k� l

p

� � l � Zg

� �k� k� ! fl�p
��p
� � l � Zg
�� k��� ��! L�

It is clear that L is a discrete set� The euclidean distance of each point to
its nearest neighbours in L is equal to 
� Moreover� note that L is contained
in a hyperplane through the origin� We have

T) �
�
k�Z

Tf�k� l� � l � Zg

�
�



�
�
k�Z

k��� ��! L�

Each individual set k��� ��!L is discrete� For k 	� k�� the set k���� ��! L is
just k��� ��! L shifted by the nonzero vector �k�� k���� ��� Since these two
sets are disjoint and their distance is positive� their union is discrete� too�
By induction� it follows that the union of all the sets k��� ��! L for k � Z�
i�e� T)� is discrete�

�B����� The reason we have presented Proposition B�� at all is its use
for studying critical distances in congruential generators� i�e� generators
�xn�

N��
n�� whose numbers have the form xn � un�M for un�M � Z �virtually

all random number generators well suited for computer implementation are
of this type� see �����
��� We will see that the existence of a lattice structure
in the s�dimensional points xn � �xn� � � � � xn�s��� leads to a lattice structure
in the 
�dimensional points x�n � �xn� xn�s����

As noted in ���
���� the x�n can be written as x
�
n � Txn� where T is the


� s�matrix

T ��

�
� � � � � � �
� � � � � � �

�
�

For this T � we have the following result���

Proposition B�
 Let ) be a lattice in Rs which contains Zs� furthermore�
let )� �� T)� Then

)� is a lattice ���

and� for any x � Rs�

T ��x!)� � ��� ��s� � �Tx!)�� � ��� ���� �
�

The meaning of the condition Zs � ) is explained in

Lemma B�� Let ) be a lattice containing Zs� Then there exists a positive
integer M such that

) � �

M
Zs�

��Which is not as obvious as it seems� see �B������

�
�



Proof� First� we show that ) is made up of rational points� i�e� ) � Qs�
and then we choose M accordingly�

Assume there is a lattice point p � ) nQs� Since at least one coordinate
of p is irrational� the points��

fkpg �k � Z�

are all distinct� Since the s coordinates of each fkpg are between � and ��
we have jjfkpgjj � p

s� This means that ) contains an in�nite number of
points fkpg whose norm is at most ps� But ) is discrete� so this cannot
be� ) is made up of rational points�

Next� observe that any p � ) can be uniquely represented as the sum of
two lattice points

p � bpc ! fpg�
where fpg � ��� ��s� There is just a �nite number of lattice points in ��� ��s�
all of which are rational� We can choose an integer M � � such that all the
fpg are in �

MZs� Since the integer points bpc are in �
MZs too� the proof is

complete� �

Proof of Proposition B�
� It su�ces to show ���� The proof of �
�
is completely equivalent to the proof of the corresponding part of Proposi�
tion ��
�

Let ) be an s�dimensional lattice and let T be de�ned as above� With
Lemma B��� there is an integer M � � such that ) � ��MZs� Multiplying
each row�vector ni �i � �� �� of T by M � we get Mn��Mn� � )�� Due to
Proposition B��� the points �xn� xn�s��� form a lattice in R

�� �

��See ������� for the meaning of the notation fxg and bxc for s�dimensional points x�

�
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