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Abstract. A local robustness approach for the selection of the architecture in 
multilayered feedforward artificial neural networks (MLFANN) is studied in 
terms of probability density function (PDF) in this work. The method is used in 
a non-linear autoregressive (NAR) model with innovative outliers. The 
procedure is proposed for the selection of the locally most robust (around a 
particular sample) MLFANN architecture candidate for exact learning of a 
finite set of the real sample. The proposed selection method is based on the 
output PDF of the MLFANN. As each MLFANN architecture leads to a 
specific output PDF when its input is a distribution with heavy tails, a distance 
between probability densities is used as a measure of local robustness. A Monte 
Carlo study is presented to illustrate the selection method. 

1 Introduction 

Artificial Neural Networks (ANN) have, by now, a long history and are well 
established in the applied field as flexible and powerful systems for solving prediction 
and pattern recognition problems. 

That statisticians should be interested in ANN is hardly surprising since the 
prediction problem plays a central role in statistics. ANN have been used with 
considerable success in modelling for time series forecasting. However, a mayor 
weakness of neural network modelling is the lack of established methods for 
performing test of misspecified models, and test of statistical significance for the 
various parameters that have been estimated.  

Most of the methods used in time series analysis and theoretic approaches rest on 
two fundamental assumptions; namely, ( i ) linearity ( ii ) Gaussianity. Both these 
assumptions are mathematical idealizations which, in some cases, may be valid, but 
only as approximations to the real situations. 

                                                           
* Work leading to this paper has been partially supported by  the Ministry of Education and 

Research, Germany, under grant BMBF-CH-99/023 and the Technical University Federico 
Santa María, Chile, under grant 240022-DGIP. 
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In the last two decades, non-linear time series have attracted research interest. One 
of the useful classes of non-linear time series models which has received a great deal 
of attention is the bilinear model [Sub 81], and [Gab 98]. Another important class of 
non-linear models is represented by feedforward ANN (FANN) and recurrent 
networks (ANN with feedback) models. FANN models for non-linear time series 
analysis have been proposed (see e.g. [COM 94]) and extensively studied (see e.g. 
[AlM 00]). 

In practice, time series data can be contaminated by the presence of a heavy-tailed 
distribution (non-Gaussianity). In such a case the occurrence of outliers should be 
respected and robust statistical procedures should be used. 

It is well know that when there are outliers in the observations, the method of least 
squares and maximum likelihood may seriously affect and produce adverse effects on 
the estimators and on the model identification. The desired statistical procedures used 
to overcome these situations are the robust estimations instead of the conventional 
least square procedure. These methods are less sensitive than least square, to typical 
departures from the ideal assumption of Gaussianity. Robust procedures for 
estimating the parameters, in presence of outliers have been given by [AlH 92] for 
linear time series models as well as [CON 96] and [GAB 98] for non-linear time 
series models. 

There have been many papers investigating the accuracy of FANN for forecasting 
time series (see e.g. [LaF 95] and [FaCH 98]). These authors, concentrated their study 
mainly on comparing the time series forecasting abilities of traditional methods 
(linear or bilinear time series models) and FANN, obtaining mixed results. Some 
favour traditional forecasting methods while others favour FANN. It is difficult to 
determine the cause of the mixed results since the research methods used are 
inconsistent. For example, some studies utilized filtered data, “clean data“ for FANN, 
while others allow FANN to use unfiltered data. 

 In the time series prediction problem, there is a strong culture for testing not only 
the predictive power of a model on the sensitivity of the dependent variable to 
changes in the inputs but also the statistical significance of the finding at a specified 
level of confidence. This is more important in the case of applications where the 
generating process is dominantly stochastic and only partially deterministic. 

The neural networks approach in forecasting problems finds its justification in a 
central theorem which claims that under certain “reasonable“ conditions, any function 
can be approximated by a FANN with one hidden layer [Whi 92]. FANN are 
inherently non-linear and approximate well non-linear functions. This “universality“ 
of the FANN approach is given a tremendous applied potential by the existence of a 
general learning paradigm, the back-propagation algorithm. Unfortunately the basis 
approximation theorem, in fact a corollary of the Stone – Weierstrass theorem, is non-
constructive, that is, it provides no practical guidelines to the construction of a neural 
network which efficiently approximates a function within pre-established limits: it 
merely states that such a network exists. Also, the back-propagation algorithm, 
though extremely useful in practice, is not guaranteed to provide optimal fitting 
networks; indeed it is a local optimization algorithm i.e., both its speed and the 
goodness of the resulting fit depend on the initial conditions. Evolutionary design of 
FANN [HeM 96], [Yao 99] has been shown to alleviate the above mentioned 
problems. It is however a very time consuming approach. 

The above shortcoming may be quite serious in view of the well-known “black 
box“ character of a FANN. No matter how well or how poorly a neural network 
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performs, it is extremely difficult to understand how it works, (see, however, [BCR 
97], [Cat 98], [MoT 00], [MoS 01]). In contrast, a traditional statistical model 
contains in itself an explanation of its successes and failures. 

Feedforward Artificial Neural networks have been widely used in nonlinear 
autoregressive moving average models for time series [CoM 94], [FaCh 98] and [AlM 
00]. The ANN architecture that we considered in the next section includes  Multilayer 
FANN with multi-inputs, one hidden layer and single-output.  Any continuous 
function can be approximated with arbitrary accuracy by a network whose structure is 
sufficiently rich (i.e. it has a sufficient number of hidden neurons).  

For neural-based identification, two main issues stand out: one is the choice of the 
number of neurons in the hidden layer (the FANN architecture) to be adopted for 
system identification and the other is the choice of the learning algorithm. The 
learning algorithm is used to control the adjustment of the weights during the training 
phase, in order to find the best performance in consideration of the training data set. 
There are generally several one hidden layer FANN architectures candidate for fitting 
a data set. Then the choice of a specific FANN architecture (number of neurons in the 
hidden layer) depends on an additional characteristic of the architecture. In this work, 
the robustness around a particular sample is investigated as such an additional 
characteristic of the FANN model performance. 

In this study, the aim is to find a suitable model which fits the data and which is 
also locally robust around a given sample. For that purpose the question of how to 
define local robustness of the FANN architecture is addressed. We assume in the 
following that the network has already been trained to provide a desired accuracy with 
the training data set. 

The paper is organized as follows: In section 2, the local robustness problem of the 
FANN is formulated. Section 3 reviews the theory of the three-layered feedforward 
ANN applied to the modelling of time series forecasting. In Section 4 nonlinear 
autoregressive models (NAR) of time series are examined. In Section 5, a procedure 
based on the comparison of the output PDF of each candidate FANN architecture to a 
given reference PDF is presented for the quantification of the local robustness of an 
NAR. Last, in section 6, a remark on a possible extension, and conclusions are given.  

2 Local Robustness Problem 

FANN constitute a very flexible class of overparameterized statistical model. 
Statistical Inference in MLP networks was developed by [Whi 89]. He showed that if 
the parameters of ANN are identified they can be consistently estimated by maximum 
likelihood methods. Moreover, the estimation of the FANN parameters follows an 
asymptotic normal distribution. This knowledge in principle allows the application of 
standard asymptotic hypotheses test, such as Wald-test. However, as FANN in 
general do not encompass the unknown function but only approximate it; they are 
inherently misspecified models. In [Whi 94] it was proven that the application of 
standard asymptotic tests is valid even if the models are misspecified. Unfortunately, 
we have the problem that the parameters of a FANN are not always identified, due to 
mutual dependencies between them. In such case the parameters are no longer 
normally distributed and inference is cumbersome. In order to specify a FANN 
architecture, on-line and off-line techniques have been developed to choose the 
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number of hidden neurons by incremental or decremental procedures. But reaching 
the right size of the hidden layer by these techniques is not guaranteed and 
termination criteria clearly lack statistical meaning. In this work, in order to specify 
different types of FANN architecture candidates, we choose an additional property, 
the robustness around a particular sample. 

The local robustness is investigated as an additional property of the FANN model. 
An important task is to see how outliers in the data affect the above screening process. 
Namely the set of selected models should be robust in the sense that they are 
indifferent to radical change of a small portion of the data or a small change in all of 
the data. 

3 Neural Network Structure 

Mathematically, a FANN consists of elementary processing elements (neurons), 
organized in layers. The layers between the input and the output layers are called 
“hidden“. The number of input units m  is determined by the application. The 
architecture or topology λA  of a network refers to the topological arrangement of the 

network connections. We define a class of neural models according to [Vap 95]. A 
class of neural models is specified by 

 

( ){ } ,,,, WwxwxgS w ∈ℜ∈= λλ  pW ℜ⊆              (3.1) 

 

where ( )wxg ,λ  is a non-linear function of x  with w  being its parameter vector, 

and p  is the number of free parameters determined by λA , i.e. ( )λρ Ap =  

A class (or family) of neural models is a set of FANN models which share the same 
architecture and whose individual members are continuously parameterized by the 

vector  ( )T
pwwww ,......, 21= . The elements of this vector are usually referred to as 

weights. For a single-hidden-layer architecture, the number of hidden units λ  indexes 

the different classes of ANN models ( λS ) since it is an unambiguous descriptor of  

the dimensionality p  of the parameter vector ( )( )12 ++= λmp . 

Given the sample of observations, the task of neural learning is to construct an 

estimator g ( x , w ) of the unknown function ( )xϕ  
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where ( )T

pwwww ,....., 21= is a parameter vector to be estimated, s'γ  are linearity or 

non-linearity and λ  is a control parameter (number of hidden units). An important 
factor in the specification of neural models is the choice of base function γ . 

Otherwise known as ‘activation‘ or ‘squashing‘ functions, these can be any non-
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linearity as long as they are continuous, bounded and differentiable. Typically 1γ  is a 

sigmoidal or the hyperbolic tangent. All these functions belong to the 
family ( ) { }{ }0,,,:,,,11 −ℜ∈ℜ∈=≡Γ cTkzcTkzγγ , where 1γ  is defined as 

follows: 
 

        ( ) { }[ ] 1
1 exp1,,, −++= TzckcTkzγ                          (3.3) 

 
when 1=c , 0=k  and 1−=T  in equation (3.3) the classical asymmetric sigmoidal 

activation function is obtained, which is the most commonly used.  

The estimated parameter nŵ  is obtained by minimizing iteratively a cost functional 

( )wLn   i.e. 

         
( ){ } ,:minargˆ WwwLw n ∈=

   
pW ℜ⊆                            (3.4) 

where ( )wLn  is for example the ordinary least squares function i.e. 
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The loss function in equation (3.5) gives us a measure of accuracy with which an 

estimator λA , fits the observed data but it does not account for the estimator’s 

(model) complexity. Given a sufficient large number of free parameter, ( )λρ Ap = , a 

neural estimator λA , can fit the data with arbitrary accuracy. Thus, from the 

perspective of selecting between candidates, model expression (3.5) is an inadequate 
measure. The usual approach to the selection is the so-called discrimination approach, 
where the models are evaluated using a fitness criterion, which usually penalizes the 
in-sample performance of the model, as the complexity of the functional form 
increases and the degrees of freedom for error become less. Such criteria, commonly 
used in the context of regression analysis are: the R-Squared adjusted for degrees of 
freedom, Mallow’s 

pC  criterion, Akaike’s AIC criterion, etc.  

4 FANN of Non-linear Autoregressive Models (NAR) 

A non-linear time series model (NAR) type can be written as 

                                ( ) tptttt axxxhx += −−− ,.....,, 21                                        (4.1) 

where h is an unknown smooth function and ta   denotes the innovation process with 

[ ] 0.......,/ 21 =−− ttt xxaE  and that ta  has finite variance 2σ . 
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Assume that a  FANN provides a non-linear approximation to h given by FANNg  

( x , w ), where w  is the vector of parameters of the FANN. In practice the data that 

we have to our disposal to represent (4.1) by an FANN can be contaminated by two 
types of outliers. Innovative outliers are present if 

ta  is from a distribution 
aF  with 

heavier tails than the normal distribution. Additive outliers are present if { tx } does 

not satisfy (4.1). Suppose that the NAR process cannot be perfectly observed because 
a small fraction ε  (in practice we usually have 1.0≤ε ) of observations are disturbed 
by an outlier-generating process }{ ttVU  where 

tU  is a zero-one process with 

P ε== )1( tU , P ε−== 1)0( tU , and the random variables 
tV  independent of 

tU , 

have arbitrary distribution function 
tG . Thus the observational model is 

                                     tttt VUXZ +=                                                       (4.2) 

Therefore with probability (1-ε ) the NAR process tX , itself is observed, and with 

probability ε  the observation is the NAR process plus an error with distribution 
tG . 

Contaminated NAR models are denoted by (CNAR). 
In this work, the aim is to find a suitable model which fits the data and which is 

also locally robust around a given sample. For that, it uses a multilayer feedforward 
network with three layers (several inputs, one hidden layer and  a single output) and  
we propose to  characterize  the local robustness  of j

tX̂  representing the prediction of  

tX , with j hidden neurons.  

There is a finite number of competing FANN architecture 
candidates for exactly learning a set of real samples. Each 
FANN architecture gives a particular output probability density function (PDF) when 
the NAR is non-Gaussian i.e. a CNAR model.  The difference between the  NAR 
output PDF  and the  CNAR output PDF may be used to build a quantitative measure 

of  local robustness.  Let )ˆ( j
tXf    be the FANN prediction PDF and )ˆ( tXf  be the 

prediction PDF (normal situation, without outliers).  To choose a model, according to 
the local  robustness goal,  is equivalent to choose a model for which the Hellinger 
metric distance is minimal. An approximation of the PDF of the FANN prediction, 
can be estimated by the method described in [TKK89]. 

5 Local Robustness of NAR  

In this section we present two examples in order to obtain some information 
concerning of the local robustness behavior  of the NAR(1) models. As an example   

to illustrate such a theory, a set of twenty noisy data points 20..11 ),( =+ iii xx  was 

created (as the experimental set) using an arbitrary nonlinear function 
sf  

 (5.1) 
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where ie are sampled from a normal distribution ),0( 10
2 IN σ with 3/12 =σ . The

function is uniformly sampled on the compact set [0,10]. A single-input single-output
(SISO) FANN model is used to fit this data set. For this a training set of five data
points selected using a pre-processing procedure, such as optimum experimental
design (OED) [HiM 99], is constructed.

According to MSE-criteria, there are three candidate architectures 2NNg , 3NNg , 

and 4NNg  for exact learning of the training set, with respectively 1hN , 2hN , and 

3hN , hidden neurons 

∑
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with iw  the vector of the NN and NNig the architecture. The standard back- 

propagation training algorithm is used to update the estimates of the weights during 
the training phase for the different FANN architectures. As can be seen on table 1, 
these FANN architectures are very similar in the least squares sense, with a small 
mean square error (MSE) in the observed design region. For the discrimination of the 
different FANN architecture a quality factor defined by the local robustness around 

4=ix  is added. In this case some architectures may appear to be better than others. 

The FANN output PDF for each candidate architecture is computed using  the method 
described by [TKK89]. 

A closer view of the local behavior of the FANNs mappings, the selected data 
points and the actual function are shown on Fig 1. 
  

 

Fig. 1. FANNs mappings of an arbitrary function and selected from architecture compared to 
the reference output  noisy interlapolate points system PDF 

 

(5.2) 
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Figure 2 shows the output PDFs of the different FANN architectures. In order to 
choose an architecture, the criterion introduced by the Hellinger metric as a measure 
of local robustness is computed for each candidate architecture. Results are given in 
table 1. 

Table 1.  MSE: mean square error between the FANN and the noisy system outputs on the 

training set and ∆ : distance between  FANN output and the reference PDFs. 

ANN 2NNg  3NNg  4NNg  

MSE 0.0794 0.078 0.0784 

∆  0.193 0.209 0.2942 

 

It appears that the model 2NNg  is the best one in the sense of this quality factor. 

 

Output Estimates PDFs of each FANN
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Fig. 2. Output estimates PDFs of each FANN 

As second example a NAR(1) is considered using a nonlinear process with
innovative outliers

( ) ttt axgx += −1                 (5.3) 

where ( )1−txg = 1.5 1−tX exp ]4/[ 2
1−− tX with ta i.i.d. is normal contaminated with

distribution

)5;0()5.0;0()1( NNFa αα +−= , and ;0=α and 01.0=α (5.4)

The experiment was performed for a fixed sample size of n=200. To avoid
initialization effects the first 150 observations were discarded. A single-input single-
output FANN model is used to fit this data. For this a training set of sixteen data
points selected using a D-optimality criterion, (see [ChC 99]), was constructed.
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Figure 3 shows the NAR(1) time series of length n=200 with and without innovative

outlier. The initial value on t=0 was 00 =x , generated by the model (5.3). Figure 3

shows the NAR(1) time series of length n=200 with and without innovative outlier.

The initial value on t=0 was 00 =x , generated by the model (5.3).

Time Series

-3
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-1

0

1

2

3

0 50 100 150 200
t

X
(t

)

NAR(1) without innovative outlier

NAR(1) with innovative outlier

Fig. 3. NAR(1) Time series with and without  innovative outliers.

To different FANN candidate architectures a quality factor defined by the local
robustness is added. In this case some architectures are discovered to be better than
others with respect to the local robustness measure studied as shown in Table 2 and
Table 3 for the case of the time series without and with innovative outliers
respectively.

Table 2. MSE: mean square error between the FANN and the noisy system outputs on the 

training set without innovative outliers and ∆ : distance between  FANN output and the 
reference PDFs. 

ANN 8NNg 9NNg  10NNg  11NNg  12NNg  13NNg  14NNg 15NNg  16NNg  

MSE 0.1566 0.1502 0.1522 0.1605 0.1506 0.1594 0.1531 0.1501 0.1501 

∆  0.1418 0.2274 0.1644 0.1581 0.2011 0.1634 0.202 0.3248 0.2666 
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Table 3. MSE: mean square error between the FANN and the noisy system outputs on the 

training set with innovative outliers and ∆ : distance between  FANN output and the reference 
PDFs. 

ANN 8NNg 9NNg  10NNg  11NNg  12NNg  13NNg  14NNg 15NNg  16NNg  

MSE 0.0954 0.0928 0.086 0.0783 0.0795 0.061 0.0744 0.0563 0.0587 

∆  0.2239 0.118 0.2246 0.2324 0.2322 0.2283 0.2173 0.221 0.2944 

 
 
It appears that the models 8NNg  and 9NNg   are the best FANN models for the 

NAR(1) without and with innovative outliers respectively in the sense of this quality 
factor. 

Figure 4 and Figure 5 shows the outputs PDFs of the different FANN architecture  

6 Conclusions 

A measure of local robustness has been applied to the problem of FANN architecture
selection. The method is based in the comparison of the FANN output probability
density function. For the output PDF comparison the Hellinger metric distance is
used. However, it could be interesting to use a different distance measure. Only
FANN architectures with one hidden layer have been considered. It has been shown
that all FANN models are not necessarily equivalent in the sense of local robustness,
around a particular sample. At present, there is little work on the analysis of the global
or local robustness of FANN models with outliers in the input data space. For this
reason further research is needed to study robustness properties in FANN with
different architectures ( e.g., NAR(p); NARMA(p,q)) and other types of outliers
(additive outliers and patchy outliers).

Other future work in robust techniques and FANN will center around making
neural networks robust to change in the variance noise. Nonlinear models are
particularly sensitive to change in the variance. One would expect to see substantial
improvements in FANN time series prediction if they can be robustified to the
variance.
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