

1/36

European Journal of Operational Research 128/1, 34-57, 2000.

An Empirical Investigation of Meta-heuristic and Heuristic Algorithms

for a 2D Packing Problem

E. Hopper and B. C. H. Turton

School of Engineering, Cardiff University, The Parade, PO Box 689, Cardiff CF2 3TF, UK
HopperE@gmx.net, Turton@cf.ac.uk

Abstract

In this paper we consider the two-dimensional rectangular packing problem, where a fixed

set of items have to be allocated on a single object. Two heuristics, which belong to the class of

packing procedures that preserve bottom-left stability, are hybridised with three meta-heuristic

algorithms (genetic algorithms, simulated annealing, naïve evolution) and local search heuristic

(hill-climbing). This study compares the hybrid algorithms in terms of solution quality and

computation time on a number of packing problems of different size. In order to show the

effectiveness of the design of the different algorithms, their performance is compared to random

search and heuristic packing routines.

Keywords: cutting; packing; genetic algorithms; simulated annealing; optimisation;

1 Introduction
Cutting and packing problems are encountered in many industries, with different industries

incorporating different constraints and objectives. The wood-, glass- and paper industry are

mainly concerned with the cutting of regular figures, whereas in the ship building, textile and

leather industry irregular, arbitrary shaped items are to be packed.

Packing problems are optimisation problems that are concerned with finding a good

arrangement of multiple items in larger containing regions (objects). The usual objective of the

allocation process is to maximise the material utilisation and hence to minimise the “wasted”

area. This is of particular interest to industries involved with mass-production as small

improvements in the layout can result in savings of material and a considerable reduction in

production costs.

Our work is concerned with a two-dimensional rectangular packing problem. The problem

consists of packing a collection of items onto a rectangular object while minimising the used

object space. The packing process has to ensure that there is no overlap between the items. The

2/36

specific problem that is addressed in this paper has the following characteristics:

• a set of items, which may contain identical items

• one single object of fixed width and infinite height

• all pieces are of rectangular shape

• items can be rotated by 90°

• non-guillotineable (Dyckhoff, 1990)

The two dimensional stock cutting problem occurs as an industrial problem where of a

number of rectangular items need to be cut from a roll of material. Since the order (set of items)

is small compared to the stock material, the height of the object can be regarded as infinite.

Processor allocation can also be treated as a two-dimensional packing problem (Hwang, 1997).

2 A Review of Meta-heuristic Packing Algorithms
Many heuristic packing algorithms have been suggested in the literature. Surveys on

solution methodologies for various types of the two-dimensional rectangle packing problem can

be found in Hinxman (1980), Sarin (1983) and Hässler and Sweeney (1991). In comparison to

the great quantity of literature on heuristic algorithms to the packing problem, only a few

researchers have experimented with meta-heuristic algorithms.

2.1 Packing and Genetic Algorithms

Genetic algorithms for packing problems mainly concentrate on guillotineable layouts as

found in the wood, glass and paper industry (Kröger, 1995; András, 1996) and one-dimensional

bin-packing (Falkenauer and Delachambre, 1992). With respect to the specific packing problem

described in section 1 three types of solution approaches involving genetic algorithms can be

distinguished.

The majority of literature concentrates on hybrid algorithms, where a genetic algorithm is

combined with a heuristic placement routine. In this two-stage approach a genetic algorithm is

used to determine the sequence, in which the items are to be packed. A second algorithm is then

needed, which describes how this sequence is allocated onto the object. One of the first

researchers who implemented genetic algorithms in the domain of packing is Smith (1985). He

experimented with two heuristic packing routines, one of which implements backtracking and

produces denser layouts, however, is computationally more expensive. Comparisons between

the two hybrid approaches show that the combination with the more sophisticated heuristic

generates better packing patterns. The packing problem Smith studied is special in that the

orientation of the rectangles is fixed.

In the hybrid approach by Hwang et al. (1994) a genetic algorithm is combined with a well-

3/36

known heuristic from bin packing, the so-called First-Fit-Decreasing-Height algorithm (FFDH).

Although this technique produces guillotineable layouts, this is not treated as an additional

constraint in this work and suggested for the general case of the rectangle packing problem.

Comparisons with another GA technique, which will be described below, and the FFDH

heuristic itself show that this hybrid technique performs best.

Jakobs (1996) uses a heuristic, which belongs to the class of bottom-left packing heuristics

to hybridise an order-based genetic algorithm. In order to reduce computational complexity the

heuristic does not necessarily place an item at the lowest available bottom-left position,

however, preserves bottom-left stability in the layout (see section 3.1). The method allows high

quality layouts to be generated.

Lai and Chan (1997) use an evolutionary algorithm, which is combined with a heuristic

routine. This routine is similar to the BL-heuristic and places items in the position that is closest

to the lower-left corner of the object. Comparisons with a mathematical programming algorithm

show that the evolutionary approach is computationally more efficient, however, it generates

patterns with slightly higher trim loss.

Dagli and Poshyanonda (1997) also used the genetic algorithm to generate an input

sequence for the placement algorithm, which is based on a sliding method combined with an

artificial neural network. Every incoming item is placed next to the partial layout and all scrap

areas generated are recorded. If there is a match between an incoming item and one of the scrap

areas, the neural network selects the best match.

A second category of solution approaches with genetic algorithms aims at incorporating

some of the layout information into the data structure of the genetic algorithm. However, some

additional rules are still needed to fix the position in the layout.

The genetic algorithm by Kröger et al. (1991) is based on a directed binary tree to encode

the problem. This representation fixes one dimension of the position of an item in the layout.

The second dimension is determined by the bottom-left condition. Since its performance is

compared to well-known packing heuristics, a relative comparison with our work is possible.

Hwang et al. (1994) also use a directed binary tree, which combines two rectangles to a

larger rectangle by either placing them horizontally or vertically next to each other. The position

within the containing larger rectangle is left justified. As mentioned before, comparisons with a

hybrid GA technique show that this method is less efficient in terms of packing height.

The third group of GA solution approaches attempts to solve the problem in 2D space.

Herbert and Dowsland (1996) developed a two-dimensional coding technique for a pallet-

loading problem of identical rectangles. The layout is represented by 2D matrix indicating

available positions for vertical and horizontal placement, whereby the horizontal one has

4/36

priority. This technique works well for small problems. In order to improve the outcome for

medium sized problems additional repair and enhance operators have been introduced.

The method developed by Ratanapan and Dagli (1997) is different from the other

approaches described so far, since it does not make use of a data structure to represent the

problem. The items are represented as two-dimensional pieces with their true geometric

dimensions. After the initialisation process, which places all items into non-overlapping

positions on the object, a series of genetic operators is applied, which consist of moving,

relocation and recombination operations.

2.2 Packing and Simulated Annealing

Only few researchers have applied simulated annealing to 2D rectangular packing problems.

Kämpke (1988) applies simulated annealing to one-dimensional bin packing. Dowsland (1993)

has experimented with simulated annealing on pallet loading problems involving identical as

well as non-identical boxes. In the identical case the number of feasible positions for the

placement of one item is reduced to the co-ordinates, which are a multiple of its length and

width away from the container edge. The neighbourhood has been defined as the set of

solutions, which is obtained, when each item is moved to any other position with some

restrictions. Since these movements lead to overlapping patterns, this constraint has been dealt

with in the objective function. Extending this method to non-identical pieces, the condition for

the feasible positions is that it has to be at a valid combination of lengths and widths of the other

item types from the container edge.

2.3 Comparison of Meta-Heuristic Methods

As can be seen from the literature overview given above genetic algorithms and simulated

annealing have been successfully applied to the two-dimensional rectangle packing problem.

However, none of the researchers has compared the performance of these meta-heuristic

algorithms using the same packing problems. Burke and Kendall (1998) have carried out the

only research in this area on the clustering of rectangles. Their findings indicate that tabu search

and simulated annealing outperform genetic algorithms for this specific problem.

In this paper our main objective is to compare the performance of genetic algorithms, naïve

evolution and simulated annealing with each other for small to large packing problems. For all

methods a two-stage approach has been chosen, where the meta-heuristic algorithm is combined

with a heuristic packing policy. As far as we are aware simulated annealing has not been

implemented in a two-stage approach for packing problems such as genetic algorithms (see

section 2.1).

Two different heuristic routines are used to hybridise the meta-heuristic algorithms. The

5/36

first technique is the BL heuristic, which has been used by Jakobs (1996) in a hybrid genetic

algorithm. The second heuristic algorithm also creates bottom-left justified patterns, however, is

more sophisticated and hence computationally more expensive (Chazelle, 1983). The outcome

of meta-heuristic algorithms is compared with the two packing heuristics as well as with other

search techniques such as hill-climbing and random search. In order to show the effectiveness of

the design of the genetic algorithms their performance is compared with a naïve evolution

algorithm. Results indicate that the performance of the hybrid algorithms is strongly dependent

on the nature of the placement routine and the problem size. In particular in industrial

applications not only the solution quality has to be considered, but also the computational cost

of the various packing methods.

This paper is organised as follows: section 3 gives a brief introduction into the heuristic and

meta-heuristic algorithms used in our research. In section 4 the experiments and the test

problems are outlined. Section 5 and 6 contain an overview and a discussion of the results and

section 7 summarises the findings of this research.

3 Heuristic Placement Algorithms
In this paper we turn our attention to the class of bottom-left heuristics (Baker et al., 1980).

These packing procedures preserve bottom-left stability in the layout. An item is allocated in a

bottom-left stable position if it cannot be moved any further to the left or downwards. Two

implementations of a bottom-left heuristic are combined in our study with meta-heuristic

algorithms.

3.1 Bottom Left Algorithm (BL)

The BL algorithm described below has been used by Jakobs (1996) in a hybrid genetic

algorithm. Starting from the top-right corner each item is slid as far as possible to the bottom

and then as far as possible to the left of the object. These successive vertical and horizontal

movement operations are repeated until the item locks in a stable position. A valid position is

found when the rectangle collides with the partial layout at its lower and left sides. Figure 1

shows the placement of a sequence of rectangles, which is described by the permutation (2, 6, 4,

3, 0, 1, 5).

Figure 1: BL routine (Jakobs, 1996)

The major disadvantage of this routine consists of the creation of empty areas in the layout,

when larger items block the movement of successive ones. On the other hand its time

complexity is only O(N2), when N is the number of items to be packed. Due its low complexity

this heuristic is favourable in a hybrid combination with a meta-heuristic, since the decoding

6/36

routine has to be executed every time the quality of a solution is evaluated and hence contributes

to a great extent to the run time of the hybrid algorithm.

3.2 BLF-Algorithm

Since the BL-routine described above tends to generate layouts with relatively large empty

areas, a second more sophisticated bottom-left heuristic has been considered for hybridisation

with meta-heuristics. The strategy here consists of placing a rectangle into the lowest available

position of the object and left-justifying it. Figure 2 demonstrates the placement policy using the

same permutation example as in Figure 1.

Figure 2: Bottom-Left-Fill heuristic

Since the generation of the layout is based on the allocation of the lowest sufficiently large

region in the partial layout rather than on a series of bottom-left moves, it is capable of filling

existing gaps in packing pattern. In order to distinguish it from the BL-algorithm described in

section 3.1 it is referred to as the Bottom-Left-Fill (BLF) heuristic. Compared to the BL-routine

this method results in denser packing patterns. The major disadvantage, however, lies in its time

complexity, which is O(N3) (Chazelle, 1983).

4 Heuristic Search Techniques
The quality of the layout which is constructed using the above placement algorithms

depends on the sequence in which the rectangles are presented to the routine. Since the number

of combinations is too large to be explored exhaustively in a reasonable amount of time, meta-

heuristic algorithms are used as a more efficient search strategy. In the following hybrid

approaches the task of the meta-heuristic is to search for a good ordering of the items. A

placement routine is then needed to interpret the permutation and evaluate its quality. Heuristic

search techniques will result in a good, however, not necessarily optimal solution within

reasonable computing time.

4.1 Hill-Climbing

Hill-climbing is a local search technique, which moves from one solution to another one in

the neighbourhood. If the quality of the new solution is better than the previous one, this move

is accepted and the search continues from here. If the neighbouring state does not result in an

improvement, the move is rejected and the search continues from the current state. The main

disadvantage of this method is that the search process might get trapped in a local minimum,

which is not equal to the global one. A useful variation on simple hill-climbing considers a

series of moves from the current state and selects the best one as the next state. This method is

known as gradient search or steepest-ascent hill-climbing.

7/36

4.2 Meta-Heuristic Algorithms

In order to overcome the main disadvantage of local search algorithms such as hill-climbing,

whose weakness lies in the inability to escape from local minima, more sophisticated heuristic

search strategies are designed to avoid such a situation. This implies the temporary acceptance

of a state of lower quality. Hence meta-heuristic algorithms can be considered to some extent as

local search strategies, however, they include a means to escape from local minima.

Genetic Algorithms

Genetic Algorithms are search and optimisation procedures that operate in a similar way to

the evolutionary processes observed in nature. The search is guided towards improvement using

the 'survival of the fittest principle'. This is achieved by extracting the most desirable features

from a generation of solutions and combining them to form the next generation. The quality of

each solution is evaluated and the 'fitter' individuals are selected for the reproduction process.

Continuation of this process through a number of generations will result in optimal or near-

optimal solutions. The main difference between genetic algorithms and other meta-heuristic

approaches such as simulated annealing and tabu search is that they deal with populations of

solutions rather than a single solution and therefore explore the neighbourhood of the whole

population. Operators such as selection, crossover and mutation are used to explore the

neighbourhood and generate a new generation. Further theoretical and practical details can be

found in (Davies, 1991; Goldberg, 1989).

Naïve Evolution Algorithm

The basic idea behind naïve evolution is the same as for the genetic algorithm. However, no

crossover operator is applied to manipulate the search space. Only the mutation operator is used

for the generation of the next population. A naïve evolution algorithm can be used to test the

efficiency of the crossover operator in a genetic algorithm. Falkenauer (1998) applied this

technique in experiments on one-dimensional bin-packing problems.

Simulated Annealing

Eglese (1990) has investigated the application of simulated annealing as a tool for

Operations Research. Simulated annealing was introduced as an optimisation tool in the 1980’s

when the concept of physical annealing first was applied in combinatorial optimisation.

Transferring this model to combinatorial problems the energy states in a system correspond to

the various feasible solutions for a problem and the energy of the system to the cost function to

be minimised.

Simulated annealing can be seen as a variant of the hill-climbing method, however, it

attempts to avoid getting trapped in a local minimum. Instead of only accepting neighbouring

8/36

solutions that result in an improvement, also solutions, which are worse, may be accepted

randomly with a certain probability. This probability depends on the increase in cost and a

control parameter, i.e. temperature in physical annealing. The smaller the increase in the cost

and the higher the temperature the more likely uphill moves will be accepted. During the

annealing process the temperature is gradually lowered according to the cooling schedule. This

means the algorithm becomes more and more selective in accepting new solutions. At the end of

the process only moves, which result in an improvement are accepted in practice. The search

process terminates when it arrives at a lower bound for temperature or cost.

5 Search Techniques and Test Data

5.1 Implementation of the Search Algorithms

A number of problem-specific and generic decisions have to be made for the

implementation of the meta-heuristic search algorithms. The problem-specific choices concern

the objective function, initial solution, representation scheme as well as the operators applied to

manipulate the search space. Generic decisions include the probabilities at which the search

space manipulators such as cross-over and mutation are applied, the cooling schedule in the case

of SA and the population and generation sizes for the GA as well as stopping criteria for the

search algorithms.

In our work the packing problem is tackled with a two-stage approach, where the meta-

heuristic search methods (GA and SA) and the local search algorithm search the solution space

for good permutations. The permutation represents the order, in which the finite set of items is

packed.

The heuristic placement routine is then used to decode and evaluate the quality of the

permutation according to the fitness function. The quality of a packing pattern is first of all

determined by its height, since the unused rectangular area can be re-used. However, this

variable is not sufficient to express how tightly the items are packed. For the fitness function a

weighted sum has been used so the packing height is weighted at 70% and the packing density

at 30%.

The search space of this problem is extended by the orientation of the items, which can

rotate by 90°. In order to allow the meta-heuristic and local search algorithms to explore the

orientation of the items, an operator is used which flips the orientation of each rectangle in the

sequence with a certain probability.

Genetic Algorithm

Since an order-based encoding is used for this problem, care has to be taken that valid

9/36

chromosomes are generated during the crossover and mutation operations. Partially matched

crossover (PMX) (Goldberg, 1989) and order-based mutation (Syswerda, 1991) are suitable for

this type of encoding and have been used in this case. Proportional selection and generational

replacement have been applied. The orientation of the rectangles is considered in the genetic

algorithm in the form of mutation. In the case of orthogonal packing only two orientations for

an item are possible. The rotation operator is applied to every item in the chromosome and

changes the orientation with a certain probability.

Further techniques that have been implemented include elitism and seeding (Goldberg,

1989). Since heuristic placements with pre-ordered input sequences can yield packing patterns,

whose quality can lie above average (Coffman et al., 1984), the initial population has been

seeded with the permutation, which describes the rectangles sorted according to decreasing

height. For the seeding the best out of 50 evaluations of the placement heuristic using randomly

generated but height-sorted input sequences has been taken. The initial population has been

generated randomly and contains the seeded individual. The genetic algorithms we implemented

use a population size of 50 and a generation size of 1000. The probability for crossover is 60%

and the one for the two types of mutation is 3%.

Naïve Evolution Algorithm

The problem-specific and generic decisions for the naïve evolution algorithm are the same

as for the genetic algorithm with the difference that no crossover operator is used to manipulate

the solution space.

Simulated Annealing Algorithm

The packing problem is represented by a permutation that is interpreted as the order in

which the rectangles are packed. The neighbourhood structure of the current solution is defined

by the set of solutions that can be reached applying the following two manipulation operations.

The first one is analogous to the order-based mutation operator used in the genetic algorithm

and swaps two randomly selected items in the permutation. The second operator considers only

the orientation and flips the rotation variable of one randomly selected item. In the translation to

the next solution only one of the operators is applied with a 50% chance. The initial solution is

randomly generated.

The generic choices for the implementation of a simulated annealing algorithm are

summarised in the annealing or cooling schedule. The schedule presented in Press et al. (1995)

is used in this study with a few modifications. The temperature function is geometric and

decreased by 10%. The initial value for the temperature has been determined as 19.23 applying

the method described by in Press et al. (1995). The number of iterations at each temperature has

10/36

been modified in order to reduce the total simulation time. The temperature is held constant for

50N total moves or 5N successful moves at each step with N representing the number of items.

Hill-Climbing

The neighbourhood structure as well as the manipulators for the search space used in the

local search procedure is the same as in simulated annealing. The initial solution is generated

randomly. The search process is stopped after N unsuccessful moves in the search space.

Random Search

In order to demonstrate the effectiveness of the design the different meta-heuristic search

techniques are compared to random search. In random search permutations are generated

randomly. The search process is run over the same number of function evaluations as the

genetic algorithm.

5.2 Test Problems

Performance of the meta-heuristic and heuristic algorithms has been tested with seven

different sized packing tasks ranging from 17 to 197 items. Three instances have been generated

for each problem category. The dimensions of the rectangles are produced randomly with a

maximum aspect ratio of 7. The problems have been constructed such that the optimal solution

is known (see Table 1). The ratio of the two dimensions of the object varies between 1 and 3.

Three instances of each problem have been simulated. Detailed information about the various

item sets is given in the Appendix.

Table 1: Test problems

problem

category

number of

items

optimal

height

object

dimensions

C1 16 or 17 20 20x20

C2 25 15 40x15

C3 28 or 29 30 60x30

C4 49 60 60x60

C5 72 or 73 90 60x90

C6 97 120 80x120

C7 196 or 197 240 160x240

5.3 Simulation

The genetic algorithm and the naïve evolution algorithm have both been simulated over

1000 generations using a population size of 50. The stopping criterion for the simulated

annealing and the hill-climbing algorithm is based on the number of unsuccessful moves. Hence

11/36

both search processes have been run until termination by this criterion. In order to establish the

efficiency of the optimisation processes random search has been applied over the same amount

of iterations as the GA (i.e. 50000). The results presented below are the average of 10

simulations. The outcome of the meta-heuristic methods is compared on basis of the number of

iterations. The heuristic methods have been run 50 times using random input sequences as well

as sequences which have been sorted by decreasing height (DH) or width (DW). The

simulations have been run on a PC with a Pentium Pro 200 MHz processor and 65MB of RAM

under Windows NT4.0. The algorithms have been implemented in C++ using LEDA (Library of

Efficient Data types and Algorithms), version 3.7.1 (Mehlhorn et al., 1998), to generate the

graphic output.

6 Results

6.1 Comparison between the heuristic algorithms BL and BLF

The comparison of the two heuristic packing algorithms shows that the more sophisticated

placement routine (BLF) achieves better layouts. Table 2 summarises the relative distances

between the lowest packing height found and the height of the optimal solution. Using random

input sequences the layouts generated by the BLF algorithm are between 10 and 30% better than

the ones obtained with the BL rule.

Table 2: Relative distance of best solution to optimum height [%] for heuristic methods with

and without pre-ordered input sequences

 C1 C2 C3 C4 C5 C6 C7

BL 25 39 33 33 31 34 41

BL-DH 17 68 27 21 18 19 31

BL-DW 18 31 24 18 22 21 29

BLF 14 20 17 15 11 12 10

BLF-DH 11 42 12 6 5 5 4

BLF-DW 11 12 12 5 5 5 5

Pre-ordering the input sequences according to decreasing width (DW) or height (DH) of the

items improves the outcome of both packing heuristics by 5 to 10% compared to the

performance on random input sequences. Comparing the best solutions achieved with both

methods for each problem shows that the BLF heuristic outperforms the BL routine by up to

25% with the performance gain being higher for the larger problems.

12/36

Figure 3: Average elapsed time per 1000 iterations for heuristics

Table 3: Average elapsed time per placement of one item for heuristic methods [µs]

problem C1 C2 C3 C4 C5 C6 C7

size 17 25 29 49 73 97 197

BL 46 61 56 95 119 158 324

BLF 72 87 114 252 470 794 3234

As already mentioned in section 3.2 the computational complexity of the BLF algorithm is

higher than the one of the BL routine. The average run time increases exponentially with the

problem size. This difference is particularly noticeable for larger packing problems (Figure 3).

The average time needed to place one item is higher for the BLF algorithm (Table 3). The

number of available bottom-left stable positions, which are tested on average, before a suitable

position is found, is higher than the number of movements carried out using the sliding method

of the BL algorithm. The number of free BL-positions in the layout increases exponentially with

the problem size.

6.2 Comparison between the heuristic algorithms BL and BLF

In the following the performance of the meta-heuristic algorithms is investigated. First of

all, the meta-heuristics methods, which use the BL decoder, are compared. Then the same

comparison is made for the meta-heuristic algorithms, which are hybridised with the more

sophisticated BLF routine. Finally, the performance of the two types of hybrid combinations is

analysed. In order to study the efficiency of the meta-heuristic methods over the simple

heuristics their outcomes have been compared to random search, which evaluates the packing

routines over the same number of iterations as the GA (i.e. 50000) using random input

sequences.

The meta-heuristic search methods using the BL decoder achieve layouts of higher quality

than the simple packing heuristic (BL). The packing heights achieved by the hybrid are up to

24% better than the ones by the BL (Table 4). The performance of the random search (RS) lies

between the one of the meta-heuristics and the packing heuristic. Hence some of the

performance gain achieved by the meta-heuristics is due to the higher number of iterations. The

outcomes of the two evolutionary methods (GA and NE) are very similar with the NE algorithm

performing slightly better for some problems (up to 2%). Hill-climbing performs better than

random search for most problems or at least equally well and outperforms the simple BL

heuristic by up to 5%. For all techniques, heuristics as well as meta-heuristics, the difference

between the packing heights achieved and the optimal height becomes larger with increasing

13/36

problem size.

Table 4: Relative distance of best solution to optimal height [%] for heuristic and meta-heuristic

methods combined with BL routine

 C1 C2 C3 C4 C5 C6 C7

GA+BL 6 10 8 9 11 15 21

NE+BL 6 8 8 8 11 13 19

SA+BL 4 7 7 6 6 7 13

HC+BL 9 18 11 14 14 20 25

RS+BL 6 14 14 16 18 20 28

BL 17 31 24 18 18 21 29

The best layouts for the hybrids with the BL decoder have been obtained with simulated

annealing in all problem categories. The difference between SA and the two evolutionary

techniques (GA and NE) lies between 1 and 8% and is higher for the larger problems. However,

the number of iterations needed by the SA is up to 5 times higher on average. Figure 1 shows

that the SA converges very slowly, whereas the GA reaches the final packing height earlier.

Figure 4: GA and SA + BL for large problem

The results obtained by the methods using the sophisticated packing heuristic, i.e. BLF,

show a similar ranking of the various methods (Table 5). For problems up to category C3

random search and hill-climbing perform better than the simple heuristic. Hill-climbing,

however, is outperformed by random search, especially for the smaller problems. The packing

heights achieved by the evolutionary algorithms, GA and NE, are very similar and outperform

random search and hill-climbing. Simulated annealing yields the best results in each problem

category.

Summarising Table 5, the meta-heuristic methods, which use the BLF decoder, achieve

packing heights, which are very close to the optimum height (between 3 and 7%). Even the BLF

heuristic on its own leads to very low packing heights. Especially, for larger problems (C2 to

C7) the difference to the meta-heuristics is maximally 2%. This finding is different from the BL

case, where the solution qualities obtained by the simple heuristic and the meta-heuristic differ

particularly for the larger problems (Table 4). Using the BLF decoder the difference to the

optimal height does not increase with the problem size as is the case with the BL decoder (see

Table 4 and Table 5). The solution quality remains at the same level for each problem category

(up to 7% from the optimum).

Table 5: Relative distance of best solution to optimum height [%] for heuristic and meta-

14/36

heuristic methods combined with BLF decoder

 C1 C2 C3 C4 C5 C6 C7

GA+BLF 4 7 5 3 4 4 5

NE+BLF 5 7 4 4 4 4 5

SA+BLF 4 6 5 3 3 3 4

HC+BLF 7 10 7 7 6 7 7

RS+BLF 5 8 7 7 6 7 7

BLF 11 16 12 5 5 5 5

The comparison of the hybrid algorithms shows that the combinations with the BLF placement

routine produce better layouts than the combinations with the BL routine. The hybrids with the

BLF routine generate layouts that are up to 16% better. The difference is especially high for the

large problems. The same is true for the NE hybrids. In Table 6 the results obtained with the two

different decoding algorithms are compared. The difference between the best solutions found

using the meta-heuristic with the BL and the BLF decoder are stated.

Figure 5 demonstrates the performance of the two genetic algorithms. Both algorithms

achieve the highest performance gain within the first 10000 iterations, i.e. 2000 generations.

Table 6: Difference between the best solutions of the hybrids with the BLF routine and the ones

with the BL routine [%]

 C1 C2 C3 C4 C5 C6 C7

GA 2 3 3 6 7 11 16

NE 1 1 4 4 7 9 14

SA 0 1 2 3 3 3 9

HC 2 8 4 7 8 13 18

RS 1 6 7 9 12 13 21

heuristic 6 15 12 13 13 16 24

Figure 5: Comparison of the two GAs combined with BL and BLF routine

Although the meta-heuristics perform better in terms of solution quality, the combinations

with the BLF decoder have longer run times (Table 7). Run times become extremely long for

large problems (C5 to C7) due to its higher computational complexity. The BL algorithm offers

an advantage in that respect. Especially, simulated annealing, which achieves the best layouts,

has high execution times. However, further adjustments to the annealing schedule will most

likely reduce the run time of this meta-heuristic.

15/36

Table 7: Average elapsed time for heuristics and meta-heuristics per run in [min]; for BL and

BLF in [ms]

 C1 C2 C3 C4 C5 C6 C7

GA+BL 0.5 0.8 0.9 2.4 4.0 6.7 23

NE+BL 0.4 0.6 0.7 1.6 2.6 4.1 30

SA+BL 0.4 1.4 1.8 7.5 17 31 117

GA+BLF 1.0 2.0 3.0 13 36 86 777

NE+BLF 0.7 1.3 2.1 8.3 23 55 483

SA+BLF 0.7 2.4 4.0 33 115 382 4181

BL [ms] 0.8 1.3 1.6 4.7 8.7 15.3 63.7

BLF [ms] 1.2 2.2 3.3 12 34 77.0 636

7 Discussion

7.1 Packing Heuristics

The BLF packing algorithm achieves better packing patterns than the BL heuristic for our

example problems. Since the BLF routine first attempts to fill the gaps in the layout, the

majority of the small items will be 'absorbed' within the existing partial layout and does not

contribute further to the packing height, which is mainly determined by the larger items (Figure

6). With the BL-rule, however, unused regions in layout cannot be accessed and smaller

rectangles also contribute to the height. The results in section 6.1 show that the difference to

optimum solution gets smaller with increasing problem size. This is due to the fact that larger

problems contain a larger number of small items, which are allocated in the empty areas

contained in the partial layout. In particular pre-ordered input sequences (height or width)

achieve dense layouts (Figure 6). Although the execution time for the BLF algorithm is

considerably larger, the performance gain especially for large packing problem justifies the

application of the BLF routine. In a combination with a meta-heuristic, however, the time

complexity plays a more important role.

Figure 6: Best layouts for a large problem (C6) with BL (left) and BLF (right); height-sorted

sequence

7.2 Meta-Heuristics and Local Search

Looking at the results stated in section 6.2 it can be seen that the meta-heuristic methods

outperform the hill-climbing algorithm due to their ability to escape from local minima. Hence

meta-heuristics offer a clear advantage over the local search algorithm in that respect. Since the

hill-climbing algorithm terminates in a local minimum its run time is shorter than that of

16/36

simulated annealing. The hill-climbing technique only allows exploration of a limited area of

the search space and is outperformed by the meta-heuristic algorithms from the beginning of the

search process (Figure 7). Although the final outcome of hill-climbing is slightly better than the

random search method, a random walk through the search space results in better solutions

during most of the search process. Whereas hill-climbing only explores the search space locally,

simulated annealing can exploit the space more effectively and concentrates on promising areas.

Figure 7: Comparison between local search and meta-heuristic methods (+BL)

Due to the manipulation technique used in SA, which either only changes the rotation of one

element at a time or the position of two elements in the permutation, the search process with the

SA is slow at the beginning and even random search results in better layouts. Random search,

however, is quickly outperformed, when the SA algorithm starts exploiting promising areas in

the solution space and finds solutions which would not have been found on a random basis.

Figure 8: Evolutionary algorithms (GA and NE) and random search for BL for C3

Looking at Figure 7 the most successful search strategy in the beginning of the search

process are genetic algorithms. Solutions found by the GA improve rapidly over the number of

evaluations and only get outperformed by the SA towards the end of the search (Figure 4).

Hence the technique which GAs use to explore the space is more successful than the one used

by SA. One of the differences between the algorithms is that a crossover operator is used in the

GA to manipulate the current best solutions. This obviously creates larger changes in the

sequences than with the mutation operator used in SA and hence could explain the rapid

progress the GA makes in the beginning.

Comparisons with a naïve evolution algorithm (NE), which is only based on mutation and

has no crossover, show, however, that both strategies are equally successful (Figure 8). Hence

the crossover operator used in this implementation is not the reason for the better exploration of

the search space in the beginning of the search process. If crossover was the main contributor,

then the difference between GA and NE would be higher. However, the mutation operator

implemented is obviously sufficient for this task. Different from the SA method the

evolutionary techniques work on a population of solutions, which they explore simultaneously.

Whereas the SA operates only on one solution at a time, the recombination method in

evolutionary algorithms guarantees that the most successful solutions are utilised in the

following generation. Hence, they allow exploration of the solution space in parallel. The GA,

however, is outperformed by the SA technique towards the end of the search process, when the

population has converged. Only the SA technique, where solutions of minor quality can be

accepted over a series of moves, can then lead the search into promising regions.

17/36

Figure 9: Random search and GAs for both decoders (BL and BLF)

In order to establish how well the meta-heuristic algorithms explore the search space, a

random search process has been applied to the packing problems. Whereas the random search

only 'explores' the solution space, the in-built search mechanisms allow the meta-heuristic

strategies to 'exploit' good regions. The difference between the GA and random search for the

BLF case is smaller, which indicates that the 'exploitation' of the solution space is limited

(Figure 9).

The comparison between the meta-heuristics, hill-climbing and random search shows that

the improvement over the BLF heuristic is largest for smaller packing problems, i.e. problems

with less then 50 items (C1 to C3). Figure 11 indicates the improvement the five different

methods have achieved over the best solution obtained with the BLF algorithm. For problems

consisting of a higher number of items (C4 to C7) only meta-heuristic methods are successful

and result in better layouts than the BLF heuristic. Random search and hill-climbing cannot

explore the enormous search space sufficiently and are easily outperformed by the simple BLF

heuristic. Unlike random search the simple BLF method used in this comparison also includes

pre-sorted sequences, where the items are sorted according to their height or width. As it can be

seen in Table 2 sorting almost always is better than random input. Since random search only

stands a theoretical chance of finding a sorted sequence it can be outperformed by the simple

BLF method as indicated in Figure 10. All meta-heuristic methods manage to improve the

heuristic solution, however, only by a few percent. The most successful method on large

problems is SA.

Figure 11: Improvement of the meta-heuristics +BLF in comparison to the best of the heuristic

solutions (BLF including sorted sequences) for each problem category

7.3 Hybrid Methods

The results summarised in Table 4 and Table 5 show that the combination between the meta-

heuristics and the BLF packing routine achieve the better outcomes compared to the

combinations with the BL routine. The difference is higher for the larger problems (Table 6).

Figure 5 shows the performance of the two heuristics in combination with a genetic

algorithm. Since the packing heights achieved with the BLF on its own are already very close to

the optimum height (less than 8% from the optimum on average), the meta-heuristic cannot

improve the performance of the heuristic as much as in the BL case. In other words by using the

'poorer' BL-decoder, the meta-heuristic is needed to find a good input sequence, whereas

applying the better BLF-heuristic good layouts are achieved in a smaller number of iterations.

18/36

Figure 12 and Figure 13 show initial and best layouts obtained by both GAs for the largest

problem.

Figure 12: Initial and best layout for GA+BL

Figure 13: Initial and best layout for GA+BLF

This questions the use of a hybrid combination between a meta-heuristic and a 'poor'

decoder for this type of packing problem. In order to achieve high quality layouts it may often

be sufficient to apply the BLF routine over a small number of iterations. This is especially true

for larger problems (>30 items, C4 to C7), where the hybrid methods only manage to improve

the heuristic solution by less than 2% (Figure 11), however, at a very high computational cost

(Table 7). For smaller problems on the other hand, where the execution times are acceptable, the

meta-heuristic with the BLF rule outperforms the simple heuristic by about 7%. In this case the

application of a meta-heuristic algorithm offers advantages.

In order to reduce the computation time the BL heuristic could be considered in connection

with the meta-heuristic. In spite of the reduction of the execution time the solution qualities

achieved with this approach for large packing tasks are up to 15% worse than those obtained

with the simple BLF heuristic (Figure 14). For smaller problems where combination with the

BLF routine achieves better layouts, the computation time is low anyway. Summarising the

hybrid approach with the 'poorer' decoder, which is more efficient in terms of computation time,

cannot be justified, since it is easily outperformed by the BLF-heuristic on large problems.

Figure 14: Improvement of the meta-heuristics + BL in comparison to the best heuristic solution

(BLF) for each problem category

An implementation of the BLF algorithm, which has a lower computational complexity, is

of great benefit for the hybrid approach using the BLF rule. Chazelle (1983) developed an

implementation of this algorithm that has a complexity of O(N2). Using a more time efficient

implementation the execution times of both heuristic packing rules become comparable, and

will only differ by a factor rather than an order of magnitude. This means the hybrid algorithms

with the BL rule lose their major advantage over the ones using the BLF decoder.

Hybrid combinations between meta-heuristics and a heuristic packing rule as investigated in

this study not only achieve high quality layouts. Their main advantage lies in simplicity of the

implementation. The meta-heuristic search is hybridised with a heuristic and acts as tuner of the

packing routine. The representation as a sequencing problem allows the use of well-known

manipulation techniques for the search space, e.g. order-based crossover operators, rather than

developing problem-specific operators that only can be used in one specific context.

19/36

On the other side it can be argued that the geometric information concerning the layout is

hidden in the heuristic decoder. Hence it cannot be exploited by meta-heuristic search processes

to the same extent as if a representation was used that includes more geometric information in

the definition of the neighbourhood structure and chromosomes respectively.

Comparisons with the approach by Ratanapan and Dagli (1997), where the items have been

represented as true geometric objects in an evolutionary search algorithm show that this does

not necessarily generate better layouts. The packing densities achieved by Ratanapan and

Dagli's technique for two medium-sized problems (21 and 31 items) are about 92%. Using the

same data sets all of the hybrid meta-heuristic techniques (SA, GA and NE) in combination with

either of the packing routines were able to outperform this result. The achieved packing

densities range between 92 and 98%, with the SA obtaining the best outcomes. For the smaller

problem the SA even found the optimum solution in 3 runs out of 10. Unfortunately, Ratanapan

and Dagli do not state the computational effort of the rearrangements in the layout after

application of the mutation operators.

Dagli and Poshyanonda (1997) developed an approach involving a hybrid between GAs and

a neural network, which achieves packing densities between 95 and 97%. Applying the meta-

heuristics in combination with the BLF routine densities between 95 and 96% are obtained.

However, the test problem Dagli and Poshyanonda use is very special in the sense that the ratio

between the width and the height of the object is very large. Even simple heuristics as the height

and width sorted BLF routines achieve a packing density of 94%. Hence, the higher effort of the

implementation in Dagli and Poshyanonda's approach is not reflected in a much better outcome.

The two-dimensional matrix representation Herbert and Dowsland (1996) developed for a

GA for the pallet loading problem of identical boxes does not achieve better outcomes as the

one-dimensional binary encoding as the authors conclude. Applying the hybrid meta heuristics

combined with BL and BLF routines to the same problems shows, that they find optimal

solutions more often than Herbert and Dowsland's approach for the small problems (<=16

items). For the larger problems only near-optimal solutions have been found. Only with the

implementation of 'enhance' and 'improvement' operators Herbert and Dowsland manage to

improve the performance for larger problems.

The GA approach developed by Kröger et al. (1991) is based on a graph structure, which

allows including some geometric information in the data structure. Since the data sets used in

the experiments are not published only an indirect comparison is possible. The packing heights

achieved with this technique are 1 and 7% better than those obtained by the BLF heuristic and

lie in the same region as our findings.

20/36

8 Conclusions
Two types of hybrid algorithms for the rectangle packing problem have been implemented

consisting of a combination of a meta-heuristic algorithm (GA, NE and SA) and heuristic

packing routine to allocate the items on the object. The heuristic packing routine generates the

layouts in a bottom-left justified manner. Whereas one of the techniques (BL) is a time-efficient

implementation based on a sliding principle, the second one (BLF) is able to fill enclosures in

the layouts, however, at higher computational cost. The meta-heuristic hybrid algorithms have

been tested on a number of packing problems and compared with heuristic and local search

methods and also with approaches used by other researchers.

In terms of solution quality the meta-heuristic algorithms outperform the heuristic packing

routines and the hill-climbing approach with SA performing best. The combinations with the

more sophisticated heuristic (BLF) achieve better layouts than the ones using the BL decoder.

For industrial problems the question, which technique in combination with the BLF routing to

choose, is a trade-off between material cost and simulation cost. In our study SA has achieved

the best layout quality over all problem categories. Its execution time, however, becomes larger

with increasing problem size. The evolutionary algorithms, GA and NE, are better in terms of

execution time and yield results, which are slightly worse than ones obtained by the SA. Hence

if the time for solving a packing task is limited, GA and NE are appropriate. For very small time

margins, only heuristic packing algorithms will be able to meet this criterion. Table 8

summarises which methods are appropriate for different sized packing tasks under limited

execution time. The information in Table 8 has to be seen in connection with the computational

power of the simulation equipment used. With the processing power constantly increasing, it

will be possible to apply meta-heuristics efficiently even in larger problems in the future.

Table 8: Method for best results within specified time limit (hybrids are with BLF decoder)

 <1min <10min < 1h < 10h < 24h

C1 GA, SA GA, SA GA, SA GA, SA GA, SA

C2 BLF SA SA SA SA

C3 BLF NE NE NE NE

C4 BLF NE SA SA SA

C5 BLF GA, NE GA, NE SA SA

C6 BLF BLF NE SA SA

C7 BLF BLF BLF NE NE

Since the performance difference between the hybrid methods using the BL decoder and the

one using the BLF decoder is only due to the improved heuristic, the decoder has a larger effect

21/36

on the outcome of the hybrid technique than the meta-heuristic technique itself. This seems to

suggest approaches, where more layout specific knowledge is incorporated in the meta-heuristic

rather than the decoder. However, representation schemes studied by other researchers that use

more layout information did not necessarily achieve higher packing densities than hybrid

techniques for the problems tested.

Concerning the methodology, hybrid algorithms are well suited for industrial demands. The

layouts achieved are of similar quality as other techniques. The implementation of the hybrid

algorithm is easier, since it is based well-known techniques and does not require development of

problem specific algorithms. With heuristics already being applied in industry, the acceptance of

research methods such as meta-heuristics certainly will be higher.

References

András P., András, A. and Zsuzsa, S., 1996. A genetic solution for the cutting stock problem. In:

Chawdry P. K., Roy R. and Kant R. K. (Eds.), Proceedings of the First On-line Workshop on

Soft Computing, Springer, Berlin, pp. 87-92.

Baker B. S., Coffman E. G., Jr. and Rivest R. L., 1980. Orthogonal packing in two dimensions.

SIAM Journal of Computing 9, 846-855.

Burke E. and Kendall G., 1998. Comparison of Meta-Heuristic Algorithms for Clustering

Rectangles. Proceedings of the 24th International Conference on Computers and Industrial

Engineering, Uxbridge, UK, (to appear).

Chazelle B., 1983. The Bottom-Left Bin-Packing Heuristic: An Efficient Implementation. IEEE

Transactions on Computers c32/8, 697-707.

Coffman, E. G., Garey, M. R. and Johnson, D. S., 1984. Approximation algorithms for bin-

packing - an updated survey. In: Ausiello, Algorithms Design for Computer Systems Design,

Springer, Vienna, pp. 49-106.

Dagli C. H. and Poshyanonda P., 1997. New approaches to nesting rectangular patterns. Journal

of Intelligent Manufacturing 8, 177-190.

Davis L., 1991. Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.

Dowsland, K.A., 1993. Some experiments with simulated annealing techniques for packing

problems. European Journal of Operational Research 68, 389-399.

Dyckhoff H., 1990. Typology of cutting and packing problems. European Journal of

Operational Research 44, 145-159.

22/36

Falkenauer E., 1998. Genetic algorithms and grouping problems, John Wiley & Sons,

Chichester.

Falkenauer E. and Delchambre A., 1992. A genetic algorithm for bin-packing and line

balancing. Proceedings of the 1992 IEEE International Conference on Robotics and

Automation, 1992, Vol.2, IEEE, Piscataway, IEEE Service Center, NJ, USA , pp.1186-1192

Goldberg D. E., 1989. Genetic Algorithms in Search, Optimisation and Machine Learning,

Addison-Wesley Publishing Company, Reading.

Hässler R. W. and Sweeney, P. E., 1991. Cutting stock problems and solution procedures.

European Journal of Operational Research 54, 141-150.

Herbert E.A. and Dowsland K.A., 1996. A family of genetic algorithms for the pallet loading

problem. Annals of Operations Research 63, 415-436.

Hinxman A. I., 1980. The trim loss and assortment problems. European Journal of Operational

Research 88, 1, 8-18.

Hopper E. and Turton B. C. H., 1998. A Genetic Algorithm for a 2D Industrial Packing

Problem. Proceedings of the 24th International Conference on Computers and Industrial

Engineering, Uxbridge, UK, (to appear).

Hopper E. and Turton B. C. H., 1997. Application of Genetic Algorithms to Packing Problems -

A Review. In: Chawdry, P. K., Roy, R. and Kant, R. K. (Eds.), Proceedings of the 2nd On-line

World Conference on Soft Computing in Engineering Design and Manufacturing, Springer

Verlag, London, pp. 279-288.

Hwang I., 1997. An efficient processor allocation algorithm using two-dimensional packing.

Journal of Parallel and Distributed Computing 42, 75-81.

Hwang S. M., Cheng Y. K. and Horng J. T., 1994. On solving rectangle bin packing problems

using genetic algorithms. Proceedings of the 1994 IEEE International Conference on Systems,

Man and Cybernetics, IEEE, Piscataway, NJ, USA, pp. 1583-1590.

Jakobs S., 1996. On genetic algorithms for the packing of polygons. European Journal of

Operational Research 88, 165-181.

Kröger B., Schwenderling P. and Vornberger O., 1991. Parallel genetic packing of rectangles.

In: Schwefel H. P. and Männer R. (Eds.), Parallel Problem Solving from Nature 1st Workshop,

Springer Verlag, Berlin, pp. 160-164.

Kröger B., 1995. Guillontineable bin-packing: A genetic approach. European Journal of

Operational Research 84, 645-661.

23/36

Lai K. K. and Chan W. M., 1997. An evolutionary algorithm for the rectangular cutting stock

problem. International Journal of Industrial Engineering 4, 130-139.

Mehlhorn, K., Näher S. and Uhrig C., 1998. LEDA - Library of Efficient Data types and

Algorithms, Max-Planck-Institut für Informatik, Saarbrücken, http://www.mpi-

sb.mpg.de/LEDA/.

Press W. H., Teuckolsky S. A., Vetterling W. T. and Flannery B. P., 1995. Numerical Recipes

in C, The Art Scientific Computing, 2nd edition, Cambridge University Press, Cambridge.

Ratanapan K. and Dagli C. H., 1997. An object-based evolutionary algorithm for solving

rectangular piece nesting problems. Proceedings of the IEEE Conference on Evolutionary

Computation, ICEC, IEEE, Piscataway, NJ, USA, pp. 989-994.

Sarin S. C., 1983. Two-dimensional stock cutting problems and solution methodologies. ASME

Transactions, Journal of Engineering for Industry 104, 155-160.

Smith D., 1985. Bin-packing with adaptive search. In: Grefenstette, J. (Ed.), Proceedings of an

International Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum, pp.

202-206.

Syswerda D., 1991. Schedule optimisation using genetic algorithms. In: Davis, L. (Ed.),

Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, pp. 332-349.

24/36

Appendix

The packing tasks are classified by the problem size, i.e. the number of items. For each category three

problems instances have been constructed. The dimensions of the items are given in the following

tables. The optimum solution for each problem is known and is achieved by packing the rectangles in

the order they are stated in the tables using the BLF routine.

Category 1:

16 or 17 items;

object: 20 x 20
P1 P2 P3

w h w h W h

2 12 4 1 4 14

7 12 4 5 5 2

8 6 9 4 2 2

3 6 3 5 9 7

3 5 3 9 5 5

5 5 1 4 2 5

3 12 5 3 7 7

3 7 4 1 3 5

5 7 5 5 6 5

2 6 7 2 3 2

3 2 9 3 6 2

4 2 3 13 4 6

3 4 2 8 6 3

4 4 15 4 10 3

9 2 5 4 6 3

11 2 10 6 10 3

 7 2

Category 2:

25 items,

object: 40 x 15
P1 P2 P3

w h w h w h

11 3 11 2 12 7

13 3 2 3 7 7

9 2 10 7 7 1

7 2 8 4 5 1

9 3 9 5 3 2

7 3 7 2 6 2

11 2 4 1 7 2

13 2 6 1 5 2

11 4 4 5 3 1

13 4 8 3 6 1

3 5 1 3 12 6

11 2 5 5 9 6

2 2 3 1 12 2

11 3 12 4 7 2

2 3 6 2 10 3

5 4 2 4 4 1

6 4 11 4 5 1

12 2 10 2 16 3

1 2 3 2 5 3

3 5 11 2 4 2

13 5 3 4 5 2

12 4 26 4 10 3

1 4 8 4 9 3

5 2 3 2 16 3

6 2 6 2 5 3

Category 3:

28 or 29 items,

object: 60 x 30
P1 P2 P3

w h w h w h

7 5 18 6 24 9

14 5 12 2 8 9

14 8 7 10 11 9

4 8 23 4 17 9

21 13 1 4 24 4

7 11 7 7 8 4

14 11 4 11 6 1

14 5 5 6 5 1

4 5 7 2 17 4

18 3 11 6 6 3

21 3 19 10 5 3

17 11 5 11 5 12

4 11 2 4 13 12

7 4 5 7 14 14

5 4 2 4 14 2

6 7 12 7 2 2

18 5 13 7 3 8

3 5 6 3 9 8

7 3 10 6 14 12

5 3 16 9 2 12

18 4 4 1 3 6

3 4 10 4 9 6

12 2 24 6 5 2

6 2 9 9 13 2

18 5 1 2 18 3

21 5 5 8 14 3

17 3 5 3 16 3

4 3 25 7 12 3

 21 5

25/36

Category 4:

49 items; object: 60 x 60
P1 P2 P3

w h w h W h w h w h w h

2 7 3 3 10 14 2 4 10 4 12 7

24 7 8 3 3 13 2 7 12 4 9 4

16 4 5 20 28 5 3 4 13 5 4 4

18 4 3 17 5 8 5 30 3 5 9 9

16 7 3 7 14 9 5 3 7 22 2 5

18 7 5 7 12 14 10 26 6 22 20 5

2 4 3 7 13 10 6 5 9 23 9 5

24 4 4 7 3 17 4 9 10 19 4 5

4 28 4 21 1 5 1 4 3 15 4 2

6 18 10 19 4 1 9 2 5 13 12 2

14 12 4 17 18 4 4 17 2 10 3 15

2 12 8 17 1 1 5 2 2 10 21 11

18 19 3 10 2 6 4 4 13 18 11 3

9 8 5 10 4 14 6 2 3 18 3 3

7 8 7 6 3 18 4 10 2 3 11 23

9 11 8 6 4 14 2 4 2 3 11 23

7 11 15 12 8 17 3 12 5 2 11 8

14 6 3 12 11 5 6 5 4 2 3 8

2 6 11 10 9 12 3 9 3 4 21 4

6 10 5 10 4 7 7 18 9 4 14 4

16 10 4 2 25 8 6 6 7 1 3 13

3 5 8 2 7 5 18 7 6 1 35 13

4 5 10 2 24 9 13 9 2 4 11 5

8 12 12 2 9 14 25 7 20 4 11 5

3 18 12 19 4 7

26/36

Category 5: 72 or 73 items; object: 60 x 90
P1 P2 P3

w h w h w h w h w h w h w h w h w h

6 34 10 2 2 3 3 5 1 2 30 10 6 37 5 11 4 2

3 13 6 6 9 6 14 3 5 1 14 19 10 15 4 5 3 5

5 13 5 6 9 6 9 27 1 1 4 26 4 7 5 5 4 5

12 10 7 14 1 6 6 24 3 3 3 3 12 7 1 3 4 24

12 10 6 14 2 6 21 7 5 20 5 23 4 18 6 3 15 12

7 6 3 16 7 5 7 10 6 23 5 20 10 8 1 4 13 12

15 6 5 16 18 5 1 2 7 2 15 4 5 8 6 4 19 7

7 25 6 14 9 3 13 19 11 21 10 6 4 25 4 2 9 7

15 25 5 14 9 3 4 17 8 7 6 3 5 25 5 2 5 4

12 21 13 14 18 9 4 13 6 15 5 2 4 8 19 25 2 4

7 16 2 3 5 6 17 3 2 1 4 2 12 8 5 9 12 5

5 16 7 3 2 6 24 10 13 14 3 1 10 10 4 9 9 22

3 21 2 11 12 2 5 4 3 14 2 3 5 10 3 6 5 1

5 21 7 11 9 2 2 2 5 26 14 3 3 4 3 6 2 1

7 5 7 6 3 8 6 1 9 14 9 2 7 4 6 13 15 12

5 5 6 6 9 8 11 9 10 3 7 8 7 10 20 13 13 12

1 4 14 33 9 10 4 26 4 13 32 6 2 10 3 18 2 5

10 4 4 12 5 3 2 1 1 3 6 2 7 15 3 18 5 5

13 6 3 12 2 3 4 7 14 11 26 5 4 18 5 16 12 17

13 12 18 16 18 3 7 38 7 10 1 2 15 18 4 16 2 12

9 12 3 12 7 3 3 2 14 12 6 5 3 18 6 11 5 12

6 23 18 12 3 2 3 1 18 3 13 3 7 18 13 4 4 5

3 7 4 4 9 2 4 2 7 4 10 3 7 5 7 4 28 5

5 7 3 4 4 6 2 7 2 5 13 7

1 2 1 3 2 1 7 28 4 11 3 2

27/36

Category 6: 97 items; object: 80 x 120

P1 P2 P3

w h w h w h w h w h w h w h w h w h w h w h w h

30 19 11 6 3 7 4 26 7 39 10 33 6 5 5 2 6 35 5 6 9 4 26 20

8 5 9 30 3 14 7 26 8 33 1 1 5 13 4 4 1 6 9 21 4 2 5 7

13 5 10 8 17 7 3 9 7 6 4 4 4 14 8 2 6 6 4 21 5 2 3 7

15 23 10 8 7 7 21 9 5 3 3 3 16 8 9 11 34 13 5 23 4 25 3 15

9 4 5 4 5 7 11 31 3 5 4 4 23 9 3 2 10 7 5 23 6 25 8 2

3 4 5 4 3 7 9 31 39 6 3 6 26 8 5 11 23 7 8 6 6 6 7 2

2 11 4 14 6 6 6 28 11 13 16 7 1 6 7 9 1 7 15 6 2 6 4 19

9 7 2 14 4 6 3 19 3 4 6 4 15 26 24 30 6 7 8 5 18 10 6 19

3 7 4 22 4 2 18 8 2 2 6 2 4 25 2 11 10 62 10 5 11 24 5 25

8 14 8 14 6 2 3 8 5 2 15 3 8 45 10 8 10 33 5 4 9 4 8 13

11 6 3 14 9 61 18 11 5 30 30 5 11 50 9 2 13 33 7 2 17 4 7 13

2 6 10 22 6 8 3 11 2 1 1 1 19 5 10 2 7 22 6 2 7 9 5 8

11 8 4 20 5 8 10 18 26 11 10 4 12 55 3 11 4 15 6 4 9 5 3 8

2 8 6 20 5 2 2 6 4 5 2 6 5 20 4 22 6 8 17 4 17 5 8 5

12 12 2 7 4 2 9 6 9 2 6 23 4 13 6 9 24 8 7 2 6 4 3 5

2 12 13 2 5 28 2 12 10 29 29 8 15 5 3 3 6 7 6 2 2 4 6 8

30 10 9 2 4 28 9 12 4 3 26 5 2 6 7 18 24 7 5 8 6 8 2 8

21 10 13 5 6 29 3 9 5 5 9 17 4 26 5 15 4 7 4 4 20 8 7 12

15 6 9 5 3 20 12 2 8 2 7 3 12 6 9 13 30 7 9 4 7 42 10 7

14 6 17 11 21 20 9 2 24 4 19 9 3 1 2 10 6 34 6 8 8 14 37 7

2 9 7 11 10 39 12 7 22 7 36 6 2 3 6 5 8 17 17 8 18 14 6 4

22 9 6 18 4 13 9 7 2 9 28 6 3 2 17 5 10 17 4 6 6 34 2 4

6 16 4 8 7 13 2 2 6 20 1 1 8 16 5 6 5 9

5 2 2 8 6 22 5 1 20 7 2 3 15 16 4 8 8 7

5 2 5 7 5 22 9 15 11 2 3 2 5 6 4 4 7 7

28/36

Category 7: 196 or 197 items; object: 160 x 240

Items no. 1 - 100

P1 P2 P3

w h w h w h w h w h w h w h w h w h w h w h w h

19 21 33 10 12 23 2 4 15 75 14 5 11 10 1 1 19 15 19 11 17 12 14 23

6 21 16 9 9 9 4 4 12 80 5 2 5 25 2 1 4 15 3 3 5 15 16 23

6 18 3 9 16 9 11 11 27 6 7 2 7 26 11 56 8 5 3 3 10 6 6 31

41 18 8 4 6 18 29 11 3 13 12 9 10 44 10 39 26 5 5 5 15 6 21 22

22 14 17 4 20 13 10 54 10 3 2 1 19 4 5 5 21 10 35 5 8 50 4 22

13 14 20 9 21 13 13 54 9 21 12 8 8 31 3 20 5 24 6 17 30 16 4 17

8 13 19 9 5 25 13 70 8 11 5 28 33 6 2 1 3 7 13 17 6 16 22 17

14 13 8 15 6 25 7 13 6 13 8 6 11 73 2 7 32 7 24 8 15 10 14 8

31 20 6 6 19 25 3 13 2 9 35 7 8 27 7 6 26 92 31 8 6 10 16 8

8 7 5 6 7 16 7 25 51 10 7 14 6 2 13 12 16 92 5 8 10 9 9 4

14 7 3 6 5 16 2 12 6 6 10 45 2 9 17 34 8 5 35 8 15 9 6 4

22 54 5 6 9 9 4 12 11 12 4 19 25 9 16 46 26 5 24 5 6 8 20 4

13 54 17 23 16 9 11 32 2 10 13 17 9 39 1 1 3 17 31 5 5 8 22 4

6 23 5 28 20 12 22 9 8 12 62 9 9 17 6 13 32 17 5 5 12 40 5 29

8 13 6 28 21 12 7 9 13 47 36 11 12 7 3 12 10 5 35 5 9 33 38 7

33 13 11 53 23 10 7 12 14 37 38 18 21 101 6 10 24 5 11 44 6 33 33 7

6 22 20 6 12 10 3 12 3 11 4 2 3 10 9 15 2 8 12 44 6 37 7 32

5 22 19 6 7 9 16 33 3 6 9 5 3 7 6 24 19 8 38 17 5 35 5 32

11 28 3 17 5 9 8 33 1 4 8 3 4 10 1 1 3 7 57 17 21 13 30 49

19 56 5 17 25 7 14 21 1 6 30 20 8 22 5 7 3 7 13 5 4 13 5 22

12 56 39 12 6 7 7 21 27 5 6 7 5 3 4 1 13 10 17 5 4 17 9 22

16 11 8 12 16 47 6 27 14 3 36 10 2 1 2 13 4 27 8 17 22 17 6 37

3 11 31 8 16 14 6 10 10 4 27 7 1 2 11 9 10 14 36 20 16 34 6 31

6 20 41 8 8 14 16 10 5 20 17 3 22 59 1 6 24 14 21 20 6 32 16 31

8 10 23 23 21 16 7 23 3 11 6 4 1 2 3 16 2 11 13 12 5 32 2 7

29/36

Category 7 cont.: items no.101 - 197
P1 P2 P3

w h w h w h w h w h w h w h w h w h w h w h w h

10 45 29 11 4 9 3 10 7 11 30 8 4 2 6 32 25 7 3 8 4 10 2 4

7 45 9 26 22 14 6 10 8 15 26 7 6 7 1 5 11 12 12 65 47 10 25 11

2 10 4 26 9 7 4 24 6 10 16 32 13 3 12 5 33 22 5 5 3 11 8 34

4 10 17 35 9 7 5 21 6 21 71 25 29 5 7 33 2 5 16 5 12 11 7 7

16 13 12 6 17 4 21 21 3 9 12 25 2 2 2 8 25 5 6 9 14 7 2 7

14 6 12 6 3 4 19 21 1 4 22 20 8 15 6 11 27 10 3 9 12 7 10 29

7 6 4 4 19 17 8 21 10 7 9 55 5 28 9 9 11 10 41 9 3 18 2 10

2 3 10 4 8 17 19 17 3 3 13 27 8 42 4 27 5 15 17 3 5 18 5 10

4 3 8 10 8 11 21 17 5 15 65 16 4 27 10 11 9 15 13 3 12 10 59 19

13 13 13 2 5 11 9 15 2 4 1 3 3 2 38 9 5 30 6 8 9 10 9 23

14 13 6 2 7 10 5 6 33 8 5 2 18 4 5 7 11 13 8 8 9 49 22 15

7 8 10 12 20 10 13 6 16 5 16 57 17 5 6 2 30 13 17 6 5 7 3 15

33 8 3 12 9 7 19 14 9 12 2 1 2 8 3 6 30 21 13 6 3 7 2 9

16 34 22 16 9 7 4 14 10 11 3 3 2 11 6 2 7 17 5 11 26 11 4 7

12 28 18 16 19 20 5 9 6 3 3 2 1 2 32 5 5 17 16 11 4 8 1 7

12 28 7 20 4 20 4 7 10 11 25 11 3 18 12 4 6 24 6 2 47 8 4 2

7 30 17 16 4 10 9 7 39 8 11 8 17 10 16 3 6 22 10 2 3 7 1 2

4 19 3 16 26 10 5 3 17 113 6 4 7 5 72 15 10 22 6 7 12 7 7 10

29 19 13 8 19 11 21 3 13 36 10 9 3 10 14 14 3 2 3 7 12 39 59 10

10 51 6 8 21 11 4 2 28 8 25 8 5 31 2 6 3 2 8 10 9 39 22 8

13 51 8 10 3 3 9 2 17 7 10 6 19 9 3 9 8 10 14 3 5 4 3 8

13 25 19 10 6 3 42 9 12 15 7 8 12 3 6 18 12 3 3 4

4 21 10 8 18 13 22 57 6 19 10 3 11 8 3 3 51 8

10 21 3 8 8 27 2 1 2 4 11 37 30 8 5 3 15 8

4 11 9 9 5 27 15 9 4 7 1 4 3 8 10 26 7 4

30/36

3

2

0

4

16

5

3

2

0

4

16

5

55

Figure 15: BL routine (Jakobs, 1996)

3

2

0

4

16

5

3

2

0

4

16

5

Figure 16: Bottom-Left-Fill heuristic

31/36

Average elapsed time per 1000 iterations

0

100

200

300

400

500

600

700

0 50 100 150 200

number of items

tim
e[

s] BL
BLF

Figure 17: Average elapsed time per 1000 iterations for heuristics

C7: Comparison between GA and SA
for BL decoder

15

20

25

30

35

40

45

0 50 100 150 200 250 300

evaluation no. x 1000

re
l.

di
ffe

re
nc

e
to

 o
pt

im
al

 h
ei

gh
t [

%
]

GA - BL SA - BL

Figure 18: GA and SA + BL for a large problem

32/36

C3: Comparison of Decoders; Genetic Algorithm

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

evaluation no. x 1000

re
l.

di
ffe

re
nc

e
to

 o
pt

im
al

 h
ei

gh
t [

%
]

GA - BL GA - BLF

Figure 19: Comparison of the two GAs combined with BL and BLF routine

Figure 20: Best layouts for a large problem (C6) with BL (left) and BLF (right); height-sorted

sequence

33/36

C3: Comaprison between local search,
meta-heuristics and random search

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

evaluation no. x 1000

re
l.

di
ffe

re
nc

e
to

 o
pt

im
al

 h
ei

gh
t [

%
]

GA - BL RS - BL HC - BL SA - BL

Figure 21: Comparison between local search and meta-heuristic methods (+BL)

Comparison between GA, NE and random search

8

10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40 45 50

evaluation no. x 1000

re
l.

di
ffe

re
nc

e
to

 o
pt

im
al

 h
ei

gh
t [

%
]

GA - BL NE - BL RS - BL

Figure 22: Evolutionary algorithms (GA and NE) and random search for BL for C3

34/36

C3: Genetic Algorithm and Random Search
for BL and BLF decoder

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

evaluation no. x 1000

re
l.

di
ffe

re
nc

e
to

 o
pt

im
al

 h
ei

gh
t [

%
]

GA - BL GA - BLF RS - BL RS - BLF

Figure 23: Random search and GAs for both decoders (BL and BLF)

Comparsion between best heuristic solution (BLF) and
meta-heuristic methods

-2

0

2

4

6

8

10

C1 C2 C3 C4 C5 C6 C7

problem category

re
l.

im
pr

ov
em

en
t i

n
he

ig
ht

[%

]

GA -BLF NE -BLF RS -BLF HC -BLF SA -BLF

Figure 24: Improvement of the meta-heuristics +BLF in comparison to the best of the heuristic

solutions (BLF including sorted sequences) for each problem category

35/36

Figure 25: Initial and best layout for GA+BL

36/36

Figure 26: Initial and best layout for GA+BLF

Comparsion between best heuristic solution (BLF) and
meta-heuristic methods

-15

-10

-5

0

5

10

C1 C2 C3 C4 C5 C6 C7

problem category

re
l.

im
pr

ov
em

en
t i

n
he

ig
ht

 [%
]

GA -BL NE -BL SA -BL

Figure 27: Improvement of the meta-heuristics + BL in comparison to the best heuristic solution

(BLF) for each problem category

