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Abstract  

In this paper we consider the two-dimensional rectangular packing problem, where a fixed 

set of items have to be allocated on a single object. Two heuristics, which belong to the class of 

packing procedures that preserve bottom-left stability, are hybridised with three meta-heuristic 

algorithms (genetic algorithms, simulated annealing, naïve evolution) and local search heuristic 

(hill-climbing). This study compares the hybrid algorithms in terms of solution quality and 

computation time on a number of packing problems of different size. In order to show the 

effectiveness of the design of the different algorithms, their performance is compared to random 

search and heuristic packing routines.  
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1 Introduction 
Cutting and packing problems are encountered in many industries, with different industries 

incorporating different constraints and objectives. The wood-, glass- and paper industry are 

mainly concerned with the cutting of regular figures, whereas in the ship building, textile and 

leather industry irregular, arbitrary shaped items are to be packed. 

Packing problems are optimisation problems that are concerned with finding a good 

arrangement of multiple items in larger containing regions (objects). The usual objective of the 

allocation process is to maximise the material utilisation and hence to minimise the “wasted” 

area. This is of particular interest to industries involved with mass-production as small 

improvements in the layout can result in savings of material and a considerable reduction in 

production costs. 

Our work is concerned with a two-dimensional rectangular packing problem. The problem 

consists of packing a collection of items onto a rectangular object while minimising the used 

object space. The packing process has to ensure that there is no overlap between the items. The 
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specific problem that is addressed in this paper has the following characteristics: 

• a set of items, which may contain identical items  

• one single object of fixed width and infinite height  

• all pieces are of rectangular shape 

• items can be rotated by 90° 

• non-guillotineable (Dyckhoff, 1990) 

The two dimensional stock cutting problem occurs as an industrial problem where of a 

number of rectangular items need to be cut from a roll of material. Since the order (set of items) 

is small compared to the stock material, the height of the object can be regarded as infinite. 

Processor allocation can also be treated as a two-dimensional packing problem (Hwang, 1997). 

2 A Review of Meta-heuristic Packing Algorithms 
Many heuristic packing algorithms have been suggested in the literature. Surveys on 

solution methodologies for various types of the two-dimensional rectangle packing problem can 

be found in Hinxman (1980), Sarin (1983) and Hässler and Sweeney (1991). In comparison to 

the great quantity of literature on heuristic algorithms to the packing problem, only a few 

researchers have experimented with meta-heuristic algorithms.  

2.1 Packing and Genetic Algorithms 

Genetic algorithms for packing problems mainly concentrate on guillotineable layouts as 

found in the wood, glass and paper industry (Kröger, 1995; András, 1996) and one-dimensional 

bin-packing (Falkenauer and Delachambre, 1992). With respect to the specific packing problem 

described in section 1 three types of solution approaches involving genetic algorithms can be 

distinguished.  

The majority of literature concentrates on hybrid algorithms, where a genetic algorithm is 

combined with a heuristic placement routine. In this two-stage approach a genetic algorithm is 

used to determine the sequence, in which the items are to be packed. A second algorithm is then 

needed, which describes how this sequence is allocated onto the object. One of the first 

researchers who implemented genetic algorithms in the domain of packing is Smith (1985). He 

experimented with two heuristic packing routines, one of which implements backtracking and 

produces denser layouts, however, is computationally more expensive. Comparisons between 

the two hybrid approaches show that the combination with the more sophisticated heuristic 

generates better packing patterns. The packing problem Smith studied is special in that the 

orientation of the rectangles is fixed. 

In the hybrid approach by Hwang et al. (1994) a genetic algorithm is combined with a well-
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known heuristic from bin packing, the so-called First-Fit-Decreasing-Height algorithm (FFDH). 

Although this technique produces guillotineable layouts, this is not treated as an additional 

constraint in this work and suggested for the general case of the rectangle packing problem. 

Comparisons with another GA technique, which will be described below, and the FFDH 

heuristic itself show that this hybrid technique performs best. 

Jakobs (1996) uses a heuristic, which belongs to the class of bottom-left packing heuristics 

to hybridise an order-based genetic algorithm. In order to reduce computational complexity the 

heuristic does not necessarily place an item at the lowest available bottom-left position, 

however, preserves bottom-left stability in the layout (see section 3.1). The method allows high 

quality layouts to be generated. 

Lai and Chan (1997) use an evolutionary algorithm, which is combined with a heuristic 

routine. This routine is similar to the BL-heuristic and places items in the position that is closest 

to the lower-left corner of the object. Comparisons with a mathematical programming algorithm 

show that the evolutionary approach is computationally more efficient, however, it generates 

patterns with slightly higher trim loss. 

Dagli and Poshyanonda (1997) also used the genetic algorithm to generate an input 

sequence for the placement algorithm, which is based on a sliding method combined with an 

artificial neural network. Every incoming item is placed next to the partial layout and all scrap 

areas generated are recorded. If there is a match between an incoming item and one of the scrap 

areas, the neural network selects the best match. 

A second category of solution approaches with genetic algorithms aims at incorporating 

some of the layout information into the data structure of the genetic algorithm. However, some 

additional rules are still needed to fix the position in the layout.  

The genetic algorithm by Kröger et al. (1991) is based on a directed binary tree to encode 

the problem. This representation fixes one dimension of the position of an item in the layout. 

The second dimension is determined by the bottom-left condition. Since its performance is 

compared to well-known packing heuristics, a relative comparison with our work is possible. 

Hwang et al. (1994) also use a directed binary tree, which combines two rectangles to a 

larger rectangle by either placing them horizontally or vertically next to each other. The position 

within the containing larger rectangle is left justified. As mentioned before, comparisons with a 

hybrid GA technique show that this method is less efficient in terms of packing height. 

The third group of GA solution approaches attempts to solve the problem in 2D space. 

Herbert and Dowsland (1996) developed a two-dimensional coding technique for a pallet-

loading problem of identical rectangles. The layout is represented by 2D matrix indicating 

available positions for vertical and horizontal placement, whereby the horizontal one has 
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priority. This technique works well for small problems. In order to improve the outcome for 

medium sized problems additional repair and enhance operators have been introduced. 

The method developed by Ratanapan and Dagli (1997) is different from the other 

approaches described so far, since it does not make use of a data structure to represent the 

problem. The items are represented as two-dimensional pieces with their true geometric 

dimensions. After the initialisation process, which places all items into non-overlapping 

positions on the object, a series of genetic operators is applied, which consist of moving, 

relocation and recombination operations. 

2.2 Packing and Simulated Annealing 

Only few researchers have applied simulated annealing to 2D rectangular packing problems. 

Kämpke (1988) applies simulated annealing to one-dimensional bin packing. Dowsland (1993) 

has experimented with simulated annealing on pallet loading problems involving identical as 

well as non-identical boxes. In the identical case the number of feasible positions for the 

placement of one item is reduced to the co-ordinates, which are a multiple of its length and 

width away from the container edge. The neighbourhood has been defined as the set of 

solutions, which is obtained, when each item is moved to any other position with some 

restrictions. Since these movements lead to overlapping patterns, this constraint has been dealt 

with in the objective function. Extending this method to non-identical pieces, the condition for 

the feasible positions is that it has to be at a valid combination of lengths and widths of the other 

item types from the container edge. 

2.3 Comparison of Meta-Heuristic Methods 

As can be seen from the literature overview given above genetic algorithms and simulated 

annealing have been successfully applied to the two-dimensional rectangle packing problem. 

However, none of the researchers has compared the performance of these meta-heuristic 

algorithms using the same packing problems. Burke and Kendall (1998) have carried out the 

only research in this area on the clustering of rectangles. Their findings indicate that tabu search 

and simulated annealing outperform genetic algorithms for this specific problem.  

In this paper our main objective is to compare the performance of genetic algorithms, naïve 

evolution and simulated annealing with each other for small to large packing problems. For all 

methods a two-stage approach has been chosen, where the meta-heuristic algorithm is combined 

with a heuristic packing policy. As far as we are aware simulated annealing has not been 

implemented in a two-stage approach for packing problems such as genetic algorithms (see 

section 2.1). 

Two different heuristic routines are used to hybridise the meta-heuristic algorithms. The 
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first technique is the BL heuristic, which has been used by Jakobs (1996) in a hybrid genetic 

algorithm. The second heuristic algorithm also creates bottom-left justified patterns, however, is 

more sophisticated and hence computationally more expensive (Chazelle, 1983). The outcome 

of meta-heuristic algorithms is compared with the two packing heuristics as well as with other 

search techniques such as hill-climbing and random search. In order to show the effectiveness of 

the design of the genetic algorithms their performance is compared with a naïve evolution 

algorithm. Results indicate that the performance of the hybrid algorithms is strongly dependent 

on the nature of the placement routine and the problem size. In particular in industrial 

applications not only the solution quality has to be considered, but also the computational cost 

of the various packing methods. 

This paper is organised as follows: section 3 gives a brief introduction into the heuristic and 

meta-heuristic algorithms used in our research. In section 4 the experiments and the test 

problems are outlined. Section 5 and 6 contain an overview and a discussion of the results and 

section 7 summarises the findings of this research. 

3 Heuristic Placement Algorithms 
In this paper we turn our attention to the class of bottom-left heuristics (Baker et al., 1980). 

These packing procedures preserve bottom-left stability in the layout. An item is allocated in a 

bottom-left stable position if it cannot be moved any further to the left or downwards. Two 

implementations of a bottom-left heuristic are combined in our study with meta-heuristic 

algorithms. 

3.1 Bottom Left Algorithm (BL) 

The BL algorithm described below has been used by Jakobs (1996) in a hybrid genetic 

algorithm. Starting from the top-right corner each item is slid as far as possible to the bottom 

and then as far as possible to the left of the object. These successive vertical and horizontal 

movement operations are repeated until the item locks in a stable position. A valid position is 

found when the rectangle collides with the partial layout at its lower and left sides. Figure 1 

shows the placement of a sequence of rectangles, which is described by the permutation (2, 6, 4, 

3, 0, 1, 5).  

Figure 1: BL routine (Jakobs, 1996) 

The major disadvantage of this routine consists of the creation of empty areas in the layout, 

when larger items block the movement of successive ones. On the other hand its time 

complexity is only O(N2), when N is the number of items to be packed. Due its low complexity 

this heuristic is favourable in a hybrid combination with a meta-heuristic, since the decoding 
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routine has to be executed every time the quality of a solution is evaluated and hence contributes 

to a great extent to the run time of the hybrid algorithm. 

3.2 BLF-Algorithm 

Since the BL-routine described above tends to generate layouts with relatively large empty 

areas, a second more sophisticated bottom-left heuristic has been considered for hybridisation 

with meta-heuristics. The strategy here consists of placing a rectangle into the lowest available 

position of the object and left-justifying it. Figure 2 demonstrates the placement policy using the 

same permutation example as in Figure 1. 

Figure 2: Bottom-Left-Fill heuristic 

Since the generation of the layout is based on the allocation of the lowest sufficiently large 

region in the partial layout rather than on a series of bottom-left moves, it is capable of filling 

existing gaps in packing pattern. In order to distinguish it from the BL-algorithm described in 

section 3.1 it is referred to as the Bottom-Left-Fill (BLF) heuristic. Compared to the BL-routine 

this method results in denser packing patterns. The major disadvantage, however, lies in its time 

complexity, which is O(N3) (Chazelle, 1983).  

4 Heuristic Search Techniques 
The quality of the layout which is constructed using the above placement algorithms 

depends on the sequence in which the rectangles are presented to the routine. Since the number 

of combinations is too large to be explored exhaustively in a reasonable amount of time, meta-

heuristic algorithms are used as a more efficient search strategy. In the following hybrid 

approaches the task of the meta-heuristic is to search for a good ordering of the items. A 

placement routine is then needed to interpret the permutation and evaluate its quality. Heuristic 

search techniques will result in a good, however, not necessarily optimal solution within 

reasonable computing time. 

4.1 Hill-Climbing 

Hill-climbing is a local search technique, which moves from one solution to another one in 

the neighbourhood. If the quality of the new solution is better than the previous one, this move 

is accepted and the search continues from here. If the neighbouring state does not result in an 

improvement, the move is rejected and the search continues from the current state. The main 

disadvantage of this method is that the search process might get trapped in a local minimum, 

which is not equal to the global one. A useful variation on simple hill-climbing considers a 

series of moves from the current state and selects the best one as the next state. This method is 

known as gradient search or steepest-ascent hill-climbing. 
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4.2 Meta-Heuristic Algorithms 

In order to overcome the main disadvantage of local search algorithms such as hill-climbing, 

whose weakness lies in the inability to escape from local minima, more sophisticated heuristic 

search strategies are designed to avoid such a situation. This implies the temporary acceptance 

of a state of lower quality. Hence meta-heuristic algorithms can be considered to some extent as 

local search strategies, however, they include a means to escape from local minima. 

Genetic Algorithms 

Genetic Algorithms are search and optimisation procedures that operate in a similar way to 

the evolutionary processes observed in nature. The search is guided towards improvement using 

the 'survival of the fittest principle'. This is achieved by extracting the most desirable features 

from a generation of solutions and combining them to form the next generation. The quality of 

each solution is evaluated and the 'fitter' individuals are selected for the reproduction process. 

Continuation of this process through a number of generations will result in optimal or near-

optimal solutions. The main difference between genetic algorithms and other meta-heuristic 

approaches such as simulated annealing and tabu search is that they deal with populations of 

solutions rather than a single solution and therefore explore the neighbourhood of the whole 

population. Operators such as selection, crossover and mutation are used to explore the 

neighbourhood and generate a new generation. Further theoretical and practical details can be 

found in (Davies, 1991; Goldberg, 1989). 

Naïve Evolution Algorithm 

The basic idea behind naïve evolution is the same as for the genetic algorithm. However, no 

crossover operator is applied to manipulate the search space. Only the mutation operator is used 

for the generation of the next population. A naïve evolution algorithm can be used to test the 

efficiency of the crossover operator in a genetic algorithm. Falkenauer (1998) applied this 

technique in experiments on one-dimensional bin-packing problems.  

Simulated Annealing 

Eglese (1990) has investigated the application of simulated annealing as a tool for 

Operations Research. Simulated annealing was introduced as an optimisation tool in the 1980’s 

when the concept of physical annealing first was applied in combinatorial optimisation. 

Transferring this model to combinatorial problems the energy states in a system correspond to 

the various feasible solutions for a problem and the energy of the system to the cost function to 

be minimised.  

Simulated annealing can be seen as a variant of the hill-climbing method, however, it 

attempts to avoid getting trapped in a local minimum. Instead of only accepting neighbouring 
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solutions that result in an improvement, also solutions, which are worse, may be accepted 

randomly with a certain probability. This probability depends on the increase in cost and a 

control parameter, i.e. temperature in physical annealing. The smaller the increase in the cost 

and the higher the temperature the more likely uphill moves will be accepted. During the 

annealing process the temperature is gradually lowered according to the cooling schedule. This 

means the algorithm becomes more and more selective in accepting new solutions. At the end of 

the process only moves, which result in an improvement are accepted in practice. The search 

process terminates when it arrives at a lower bound for temperature or cost.  

5 Search Techniques and Test Data 

5.1 Implementation of the Search Algorithms 

A number of problem-specific and generic decisions have to be made for the 

implementation of the meta-heuristic search algorithms. The problem-specific choices concern 

the objective function, initial solution, representation scheme as well as the operators applied to 

manipulate the search space. Generic decisions include the probabilities at which the search 

space manipulators such as cross-over and mutation are applied, the cooling schedule in the case 

of SA and the population and generation sizes for the GA as well as stopping criteria for the 

search algorithms. 

In our work the packing problem is tackled with a two-stage approach, where the meta-

heuristic search methods (GA and SA) and the local search algorithm search the solution space 

for good permutations. The permutation represents the order, in which the finite set of items is 

packed. 

The heuristic placement routine is then used to decode and evaluate the quality of the 

permutation according to the fitness function. The quality of a packing pattern is first of all 

determined by its height, since the unused rectangular area can be re-used. However, this 

variable is not sufficient to express how tightly the items are packed. For the fitness function a 

weighted sum has been used so the packing height is weighted at 70% and the packing density 

at 30%. 

The search space of this problem is extended by the orientation of the items, which can 

rotate by 90°. In order to allow the meta-heuristic and local search algorithms to explore the 

orientation of the items, an operator is used which flips the orientation of each rectangle in the 

sequence with a certain probability. 

Genetic Algorithm 

Since an order-based encoding is used for this problem, care has to be taken that valid 
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chromosomes are generated during the crossover and mutation operations. Partially matched 

crossover (PMX) (Goldberg, 1989) and order-based mutation (Syswerda, 1991) are suitable for 

this type of encoding and have been used in this case. Proportional selection and generational 

replacement have been applied. The orientation of the rectangles is considered in the genetic 

algorithm in the form of mutation. In the case of orthogonal packing only two orientations for 

an item are possible. The rotation operator is applied to every item in the chromosome and 

changes the orientation with a certain probability. 

Further techniques that have been implemented include elitism and seeding (Goldberg, 

1989). Since heuristic placements with pre-ordered input sequences can yield packing patterns, 

whose quality can lie above average (Coffman et al., 1984), the initial population has been 

seeded with the permutation, which describes the rectangles sorted according to decreasing 

height. For the seeding the best out of 50 evaluations of the placement heuristic using randomly 

generated but height-sorted input sequences has been taken. The initial population has been 

generated randomly and contains the seeded individual. The genetic algorithms we implemented 

use a population size of 50 and a generation size of 1000. The probability for crossover is 60% 

and the one for the two types of mutation is 3%. 

Naïve Evolution Algorithm 

The problem-specific and generic decisions for the naïve evolution algorithm are the same 

as for the genetic algorithm with the difference that no crossover operator is used to manipulate 

the solution space. 

Simulated Annealing Algorithm 

The packing problem is represented by a permutation that is interpreted as the order in 

which the rectangles are packed. The neighbourhood structure of the current solution is defined 

by the set of solutions that can be reached applying the following two manipulation operations. 

The first one is analogous to the order-based mutation operator used in the genetic algorithm 

and swaps two randomly selected items in the permutation. The second operator considers only 

the orientation and flips the rotation variable of one randomly selected item. In the translation to 

the next solution only one of the operators is applied with a 50% chance. The initial solution is 

randomly generated. 

The generic choices for the implementation of a simulated annealing algorithm are 

summarised in the annealing or cooling schedule. The schedule presented in Press et al. (1995) 

is used in this study with a few modifications. The temperature function is geometric and 

decreased by 10%. The initial value for the temperature has been determined as 19.23 applying 

the method described by in Press et al. (1995). The number of iterations at each temperature has 
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been modified in order to reduce the total simulation time. The temperature is held constant for 

50N total moves or 5N successful moves at each step with N representing the number of items. 

Hill-Climbing 

The neighbourhood structure as well as the manipulators for the search space used in the 

local search procedure is the same as in simulated annealing. The initial solution is generated 

randomly. The search process is stopped after N unsuccessful moves in the search space. 

Random Search 

In order to demonstrate the effectiveness of the design the different meta-heuristic search 

techniques are compared to random search. In random search permutations are generated 

randomly. The search process is run over the same number of function evaluations as the 

genetic algorithm. 

5.2 Test Problems 

Performance of the meta-heuristic and heuristic algorithms has been tested with seven 

different sized packing tasks ranging from 17 to 197 items. Three instances have been generated 

for each problem category. The dimensions of the rectangles are produced randomly with a 

maximum aspect ratio of 7. The problems have been constructed such that the optimal solution 

is known (see Table 1). The ratio of the two dimensions of the object varies between 1 and 3. 

Three instances of each problem have been simulated. Detailed information about the various 

item sets is given in the Appendix. 

Table 1: Test problems 

problem 

category 

number of 

items 

optimal 

height 

object 

dimensions 

C1 16 or 17 20 20x20 

C2 25 15 40x15 

C3 28 or 29 30 60x30 

C4 49 60 60x60 

C5 72 or 73 90 60x90 

C6 97 120 80x120 

C7 196 or 197 240 160x240 

5.3 Simulation 

The genetic algorithm and the naïve evolution algorithm have both been simulated over 

1000 generations using a population size of 50. The stopping criterion for the simulated 

annealing and the hill-climbing algorithm is based on the number of unsuccessful moves. Hence 
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both search processes have been run until termination by this criterion. In order to establish the 

efficiency of the optimisation processes random search has been applied over the same amount 

of iterations as the GA (i.e. 50000). The results presented below are the average of 10 

simulations. The outcome of the meta-heuristic methods is compared on basis of the number of 

iterations. The heuristic methods have been run 50 times using random input sequences as well 

as sequences which have been sorted by decreasing height (DH) or width (DW). The 

simulations have been run on a PC with a Pentium Pro 200 MHz processor and 65MB of RAM 

under Windows NT4.0. The algorithms have been implemented in C++ using LEDA (Library of 

Efficient Data types and Algorithms), version 3.7.1 (Mehlhorn et al., 1998), to generate the 

graphic output. 

6 Results 

6.1 Comparison between the heuristic algorithms BL and BLF 

The comparison of the two heuristic packing algorithms shows that the more sophisticated 

placement routine (BLF) achieves better layouts. Table 2 summarises the relative distances 

between the lowest packing height found and the height of the optimal solution. Using random 

input sequences the layouts generated by the BLF algorithm are between 10 and 30% better than 

the ones obtained with the BL rule.  

Table 2: Relative distance of best solution to optimum height [%] for heuristic methods with 

and without pre-ordered input sequences 

 C1 C2 C3 C4 C5 C6 C7 

BL  25 39 33 33 31 34 41 

BL-DH 17 68 27 21 18 19 31 

BL-DW 18 31 24 18 22 21 29 

BLF 14 20 17 15 11 12 10 

BLF-DH 11 42 12 6 5 5 4 

BLF-DW 11 12 12 5 5 5 5 

 

Pre-ordering the input sequences according to decreasing width (DW) or height (DH) of the 

items improves the outcome of both packing heuristics by 5 to 10% compared to the 

performance on random input sequences. Comparing the best solutions achieved with both 

methods for each problem shows that the BLF heuristic outperforms the BL routine by up to 

25% with the performance gain being higher for the larger problems. 
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Figure 3: Average elapsed time per 1000 iterations for heuristics 

Table 3: Average elapsed time per placement of one item for heuristic methods [µs] 

problem C1 C2 C3 C4 C5 C6 C7 

size  17 25 29 49 73 97 197 

BL  46 61 56 95 119 158 324 

BLF 72 87 114 252 470 794 3234 

 

As already mentioned in section 3.2 the computational complexity of the BLF algorithm is 

higher than the one of the BL routine. The average run time increases exponentially with the 

problem size. This difference is particularly noticeable for larger packing problems (Figure 3). 

The average time needed to place one item is higher for the BLF algorithm (Table 3). The 

number of available bottom-left stable positions, which are tested on average, before a suitable 

position is found, is higher than the number of movements carried out using the sliding method 

of the BL algorithm. The number of free BL-positions in the layout increases exponentially with 

the problem size. 

6.2 Comparison between the heuristic algorithms BL and BLF 

In the following the performance of the meta-heuristic algorithms is investigated. First of 

all, the meta-heuristics methods, which use the BL decoder, are compared. Then the same 

comparison is made for the meta-heuristic algorithms, which are hybridised with the more 

sophisticated BLF routine. Finally, the performance of the two types of hybrid combinations is 

analysed. In order to study the efficiency of the meta-heuristic methods over the simple 

heuristics their outcomes have been compared to random search, which evaluates the packing 

routines over the same number of iterations as the GA (i.e. 50000) using random input 

sequences. 

The meta-heuristic search methods using the BL decoder achieve layouts of higher quality 

than the simple packing heuristic (BL). The packing heights achieved by the hybrid are up to 

24% better than the ones by the BL (Table 4). The performance of the random search (RS) lies 

between the one of the meta-heuristics and the packing heuristic. Hence some of the 

performance gain achieved by the meta-heuristics is due to the higher number of iterations. The 

outcomes of the two evolutionary methods (GA and NE) are very similar with the NE algorithm 

performing slightly better for some problems (up to 2%). Hill-climbing performs better than 

random search for most problems or at least equally well and outperforms the simple BL 

heuristic by up to 5%. For all techniques, heuristics as well as meta-heuristics, the difference 

between the packing heights achieved and the optimal height becomes larger with increasing 
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problem size. 

Table 4: Relative distance of best solution to optimal height [%] for heuristic and meta-heuristic 

methods combined with BL routine 

 C1 C2 C3 C4 C5 C6 C7 

GA+BL 6 10 8 9 11 15 21 

NE+BL 6 8 8 8 11 13 19 

SA+BL 4 7 7 6 6 7 13 

HC+BL 9 18 11 14 14 20 25 

RS+BL 6 14 14 16 18 20 28 

BL 17 31 24 18 18 21 29 

 

The best layouts for the hybrids with the BL decoder have been obtained with simulated 

annealing in all problem categories. The difference between SA and the two evolutionary 

techniques (GA and NE) lies between 1 and 8% and is higher for the larger problems. However, 

the number of iterations needed by the SA is up to 5 times higher on average. Figure 1 shows 

that the SA converges very slowly, whereas the GA reaches the final packing height earlier.  

Figure 4: GA and SA + BL for large problem 

The results obtained by the methods using the sophisticated packing heuristic, i.e. BLF, 

show a similar ranking of the various methods (Table 5). For problems up to category C3 

random search and hill-climbing perform better than the simple heuristic. Hill-climbing, 

however, is outperformed by random search, especially for the smaller problems. The packing 

heights achieved by the evolutionary algorithms, GA and NE, are very similar and outperform 

random search and hill-climbing. Simulated annealing yields the best results in each problem 

category. 

Summarising Table 5, the meta-heuristic methods, which use the BLF decoder, achieve 

packing heights, which are very close to the optimum height (between 3 and 7%). Even the BLF 

heuristic on its own leads to very low packing heights. Especially, for larger problems (C2 to 

C7) the difference to the meta-heuristics is maximally 2%. This finding is different from the BL 

case, where the solution qualities obtained by the simple heuristic and the meta-heuristic differ 

particularly for the larger problems (Table 4). Using the BLF decoder the difference to the 

optimal height does not increase with the problem size as is the case with the BL decoder (see 

Table 4 and Table 5). The solution quality remains at the same level for each problem category 

(up to 7% from the optimum).  

Table 5: Relative distance of best solution to optimum height [%] for heuristic and meta-



 

14/36 

heuristic methods combined with BLF decoder 

 C1 C2 C3 C4 C5 C6 C7 

GA+BLF 4 7 5 3 4 4 5 

NE+BLF 5 7 4 4 4 4 5 

SA+BLF 4 6 5 3 3 3 4 

HC+BLF 7 10 7 7 6 7 7 

RS+BLF 5 8 7 7 6 7 7 

BLF 11 16 12 5 5 5 5 

 

The comparison of the hybrid algorithms shows that the combinations with the BLF placement 

routine produce better layouts than the combinations with the BL routine. The hybrids with the 

BLF routine generate layouts that are up to 16% better. The difference is especially high for the 

large problems. The same is true for the NE hybrids. In Table 6 the results obtained with the two 

different decoding algorithms are compared. The difference between the best solutions found 

using the meta-heuristic with the BL and the BLF decoder are stated.  

Figure 5 demonstrates the performance of the two genetic algorithms. Both algorithms 

achieve the highest performance gain within the first 10000 iterations, i.e. 2000 generations.  

Table 6: Difference between the best solutions of the hybrids with the BLF routine and the ones 

with the BL routine [%] 

 C1 C2 C3 C4 C5 C6 C7 

GA 2 3 3 6 7 11 16 

NE 1 1 4 4 7 9 14 

SA 0 1 2 3 3 3 9 

HC 2 8 4 7 8 13 18 

RS 1 6 7 9 12 13 21 

heuristic 6 15 12 13 13 16 24 

 

Figure 5: Comparison of the two GAs combined with BL and BLF routine  

Although the meta-heuristics perform better in terms of solution quality, the combinations 

with the BLF decoder have longer run times (Table 7). Run times become extremely long for 

large problems (C5 to C7) due to its higher computational complexity. The BL algorithm offers 

an advantage in that respect. Especially, simulated annealing, which achieves the best layouts, 

has high execution times. However, further adjustments to the annealing schedule will most 

likely reduce the run time of this meta-heuristic. 
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Table 7: Average elapsed time for heuristics and meta-heuristics per run in [min]; for BL and 

BLF in [ms] 

 C1 C2 C3 C4 C5 C6 C7 

GA+BL 0.5 0.8 0.9 2.4 4.0 6.7 23 

NE+BL 0.4 0.6 0.7 1.6 2.6 4.1 30 

SA+BL 0.4 1.4 1.8 7.5 17 31 117 

GA+BLF 1.0 2.0 3.0 13 36 86 777 

NE+BLF 0.7 1.3 2.1 8.3 23 55 483 

SA+BLF 0.7 2.4 4.0 33 115 382 4181 

BL [ms] 0.8 1.3 1.6 4.7 8.7 15.3 63.7 

BLF [ms] 1.2 2.2 3.3 12 34 77.0 636 

 

7 Discussion 

7.1 Packing Heuristics  

The BLF packing algorithm achieves better packing patterns than the BL heuristic for our 

example problems. Since the BLF routine first attempts to fill the gaps in the layout, the 

majority of the small items will be 'absorbed' within the existing partial layout and does not 

contribute further to the packing height, which is mainly determined by the larger items (Figure 

6). With the BL-rule, however, unused regions in layout cannot be accessed and smaller 

rectangles also contribute to the height. The results in section 6.1 show that the difference to 

optimum solution gets smaller with increasing problem size. This is due to the fact that larger 

problems contain a larger number of small items, which are allocated in the empty areas 

contained in the partial layout. In particular pre-ordered input sequences (height or width) 

achieve dense layouts (Figure 6). Although the execution time for the BLF algorithm is 

considerably larger, the performance gain especially for large packing problem justifies the 

application of the BLF routine. In a combination with a meta-heuristic, however, the time 

complexity plays a more important role. 

Figure 6: Best layouts for a large problem (C6) with BL (left) and BLF (right); height-sorted 

sequence  

7.2 Meta-Heuristics and Local Search 

Looking at the results stated in section 6.2 it can be seen that the meta-heuristic methods 

outperform the hill-climbing algorithm due to their ability to escape from local minima. Hence 

meta-heuristics offer a clear advantage over the local search algorithm in that respect. Since the 

hill-climbing algorithm terminates in a local minimum its run time is shorter than that of 
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simulated annealing. The hill-climbing technique only allows exploration of a limited area of 

the search space and is outperformed by the meta-heuristic algorithms from the beginning of the 

search process (Figure 7). Although the final outcome of hill-climbing is slightly better than the 

random search method, a random walk through the search space results in better solutions 

during most of the search process. Whereas hill-climbing only explores the search space locally, 

simulated annealing can exploit the space more effectively and concentrates on promising areas.  

Figure 7: Comparison between local search and meta-heuristic methods (+BL) 

Due to the manipulation technique used in SA, which either only changes the rotation of one 

element at a time or the position of two elements in the permutation, the search process with the 

SA is slow at the beginning and even random search results in better layouts. Random search, 

however, is quickly outperformed, when the SA algorithm starts exploiting promising areas in 

the solution space and finds solutions which would not have been found on a random basis.  

Figure 8: Evolutionary algorithms (GA and NE) and random search for BL for C3 

Looking at Figure 7 the most successful search strategy in the beginning of the search 

process are genetic algorithms. Solutions found by the GA improve rapidly over the number of 

evaluations and only get outperformed by the SA towards the end of the search (Figure 4). 

Hence the technique which GAs use to explore the space is more successful than the one used 

by SA. One of the differences between the algorithms is that a crossover operator is used in the 

GA to manipulate the current best solutions. This obviously creates larger changes in the 

sequences than with the mutation operator used in SA and hence could explain the rapid 

progress the GA makes in the beginning.  

Comparisons with a naïve evolution algorithm (NE), which is only based on mutation and 

has no crossover, show, however, that both strategies are equally successful (Figure 8). Hence 

the crossover operator used in this implementation is not the reason for the better exploration of 

the search space in the beginning of the search process. If crossover was the main contributor, 

then the difference between GA and NE would be higher. However, the mutation operator 

implemented is obviously sufficient for this task. Different from the SA method the 

evolutionary techniques work on a population of solutions, which they explore simultaneously. 

Whereas the SA operates only on one solution at a time, the recombination method in 

evolutionary algorithms guarantees that the most successful solutions are utilised in the 

following generation. Hence, they allow exploration of the solution space in parallel. The GA, 

however, is outperformed by the SA technique towards the end of the search process, when the 

population has converged. Only the SA technique, where solutions of minor quality can be 

accepted over a series of moves, can then lead the search into promising regions. 
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Figure 9: Random search and GAs for both decoders (BL and BLF) 

In order to establish how well the meta-heuristic algorithms explore the search space, a 

random search process has been applied to the packing problems. Whereas the random search 

only 'explores' the solution space, the in-built search mechanisms allow the meta-heuristic 

strategies to 'exploit' good regions. The difference between the GA and random search for the 

BLF case is smaller, which indicates that the 'exploitation' of the solution space is limited 

(Figure 9).  

The comparison between the meta-heuristics, hill-climbing and random search shows that 

the improvement over the BLF heuristic is largest for smaller packing problems, i.e. problems 

with less then 50 items (C1 to C3). Figure 11 indicates the improvement the five different 

methods have achieved over the best solution obtained with the BLF algorithm. For problems 

consisting of a higher number of items (C4 to C7) only meta-heuristic methods are successful 

and result in better layouts than the BLF heuristic. Random search and hill-climbing cannot 

explore the enormous search space sufficiently and are easily outperformed by the simple BLF 

heuristic. Unlike random search the simple BLF method used in this comparison also includes 

pre-sorted sequences, where the items are sorted according to their height or width. As it can be 

seen in Table 2 sorting almost always is better than random input. Since random search only 

stands a theoretical chance of finding a sorted sequence it can be outperformed by the simple 

BLF method as indicated in Figure 10. All meta-heuristic methods manage to improve the 

heuristic solution, however, only by a few percent. The most successful method on large 

problems is SA.  

Figure 11: Improvement of the meta-heuristics +BLF in comparison to the best of the heuristic 

solutions (BLF including sorted sequences) for each problem category 

7.3 Hybrid Methods  

The results summarised in Table 4 and Table 5 show that the combination between the meta-

heuristics and the BLF packing routine achieve the better outcomes compared to the 

combinations with the BL routine. The difference is higher for the larger problems (Table 6).  

Figure 5 shows the performance of the two heuristics in combination with a genetic 

algorithm. Since the packing heights achieved with the BLF on its own are already very close to 

the optimum height (less than 8% from the optimum on average), the meta-heuristic cannot 

improve the performance of the heuristic as much as in the BL case. In other words by using the 

'poorer' BL-decoder, the meta-heuristic is needed to find a good input sequence, whereas 

applying the better BLF-heuristic good layouts are achieved in a smaller number of iterations. 
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Figure 12 and Figure 13 show initial and best layouts obtained by both GAs for the largest 

problem. 

Figure 12: Initial and best layout for GA+BL 

Figure 13: Initial and best layout for GA+BLF 

This questions the use of a hybrid combination between a meta-heuristic and a 'poor' 

decoder for this type of packing problem. In order to achieve high quality layouts it may often 

be sufficient to apply the BLF routine over a small number of iterations. This is especially true 

for larger problems (>30 items, C4 to C7), where the hybrid methods only manage to improve 

the heuristic solution by less than 2% (Figure 11), however, at a very high computational cost 

(Table 7). For smaller problems on the other hand, where the execution times are acceptable, the 

meta-heuristic with the BLF rule outperforms the simple heuristic by about 7%. In this case the 

application of a meta-heuristic algorithm offers advantages.  

In order to reduce the computation time the BL heuristic could be considered in connection 

with the meta-heuristic. In spite of the reduction of the execution time the solution qualities 

achieved with this approach for large packing tasks are up to 15% worse than those obtained 

with the simple BLF heuristic (Figure 14). For smaller problems where combination with the 

BLF routine achieves better layouts, the computation time is low anyway. Summarising the 

hybrid approach with the 'poorer' decoder, which is more efficient in terms of computation time, 

cannot be justified, since it is easily outperformed by the BLF-heuristic on large problems.  

Figure 14: Improvement of the meta-heuristics + BL in comparison to the best heuristic solution 

(BLF) for each problem category 

An implementation of the BLF algorithm, which has a lower computational complexity, is 

of great benefit for the hybrid approach using the BLF rule. Chazelle (1983) developed an 

implementation of this algorithm that has a complexity of O(N2). Using a more time efficient 

implementation the execution times of both heuristic packing rules become comparable, and 

will only differ by a factor rather than an order of magnitude. This means the hybrid algorithms 

with the BL rule lose their major advantage over the ones using the BLF decoder.  

Hybrid combinations between meta-heuristics and a heuristic packing rule as investigated in 

this study not only achieve high quality layouts. Their main advantage lies in simplicity of the 

implementation. The meta-heuristic search is hybridised with a heuristic and acts as tuner of the 

packing routine. The representation as a sequencing problem allows the use of well-known 

manipulation techniques for the search space, e.g. order-based crossover operators, rather than 

developing problem-specific operators that only can be used in one specific context.  
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On the other side it can be argued that the geometric information concerning the layout is 

hidden in the heuristic decoder. Hence it cannot be exploited by meta-heuristic search processes 

to the same extent as if a representation was used that includes more geometric information in 

the definition of the neighbourhood structure and chromosomes respectively.  

Comparisons with the approach by Ratanapan and Dagli (1997), where the items have been 

represented as true geometric objects in an evolutionary search algorithm show that this does 

not necessarily generate better layouts. The packing densities achieved by Ratanapan and 

Dagli's technique for two medium-sized problems (21 and 31 items) are about 92%. Using the 

same data sets all of the hybrid meta-heuristic techniques (SA, GA and NE) in combination with 

either of the packing routines were able to outperform this result. The achieved packing 

densities range between 92 and 98%, with the SA obtaining the best outcomes. For the smaller 

problem the SA even found the optimum solution in 3 runs out of 10. Unfortunately, Ratanapan 

and Dagli do not state the computational effort of the rearrangements in the layout after 

application of the mutation operators.  

Dagli and Poshyanonda (1997) developed an approach involving a hybrid between GAs and 

a neural network, which achieves packing densities between 95 and 97%. Applying the meta-

heuristics in combination with the BLF routine densities between 95 and 96% are obtained. 

However, the test problem Dagli and Poshyanonda use is very special in the sense that the ratio 

between the width and the height of the object is very large. Even simple heuristics as the height 

and width sorted BLF routines achieve a packing density of 94%. Hence, the higher effort of the 

implementation in Dagli and Poshyanonda's approach is not reflected in a much better outcome. 

The two-dimensional matrix representation Herbert and Dowsland (1996) developed for a 

GA for the pallet loading problem of identical boxes does not achieve better outcomes as the 

one-dimensional binary encoding as the authors conclude. Applying the hybrid meta heuristics 

combined with BL and BLF routines to the same problems shows, that they find optimal 

solutions more often than Herbert and Dowsland's approach for the small problems (<=16 

items). For the larger problems only near-optimal solutions have been found. Only with the 

implementation of 'enhance' and 'improvement' operators Herbert and Dowsland manage to 

improve the performance for larger problems. 

The GA approach developed by Kröger et al. (1991) is based on a graph structure, which 

allows including some geometric information in the data structure. Since the data sets used in 

the experiments are not published only an indirect comparison is possible. The packing heights 

achieved with this technique are 1 and 7% better than those obtained by the BLF heuristic and 

lie in the same region as our findings.  
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8 Conclusions 
Two types of hybrid algorithms for the rectangle packing problem have been implemented 

consisting of a combination of a meta-heuristic algorithm (GA, NE and SA) and heuristic 

packing routine to allocate the items on the object. The heuristic packing routine generates the 

layouts in a bottom-left justified manner. Whereas one of the techniques (BL) is a time-efficient 

implementation based on a sliding principle, the second one (BLF) is able to fill enclosures in 

the layouts, however, at higher computational cost. The meta-heuristic hybrid algorithms have 

been tested on a number of packing problems and compared with heuristic and local search 

methods and also with approaches used by other researchers.  

In terms of solution quality the meta-heuristic algorithms outperform the heuristic packing 

routines and the hill-climbing approach with SA performing best. The combinations with the 

more sophisticated heuristic (BLF) achieve better layouts than the ones using the BL decoder. 

For industrial problems the question, which technique in combination with the BLF routing to 

choose, is a trade-off between material cost and simulation cost. In our study SA has achieved 

the best layout quality over all problem categories. Its execution time, however, becomes larger 

with increasing problem size. The evolutionary algorithms, GA and NE, are better in terms of 

execution time and yield results, which are slightly worse than ones obtained by the SA. Hence 

if the time for solving a packing task is limited, GA and NE are appropriate. For very small time 

margins, only heuristic packing algorithms will be able to meet this criterion. Table 8 

summarises which methods are appropriate for different sized packing tasks under limited 

execution time. The information in Table 8 has to be seen in connection with the computational 

power of the simulation equipment used. With the processing power constantly increasing, it 

will be possible to apply meta-heuristics efficiently even in larger problems in the future.  

Table 8: Method for best results within specified time limit (hybrids are with BLF decoder) 

 <1min <10min < 1h < 10h < 24h 

C1 GA, SA GA, SA GA, SA GA, SA GA, SA 

C2 BLF SA SA SA SA 

C3 BLF NE NE NE NE 

C4 BLF NE SA SA SA 

C5 BLF GA, NE GA, NE SA SA 

C6 BLF BLF NE SA SA 

C7 BLF BLF BLF NE NE 

 

Since the performance difference between the hybrid methods using the BL decoder and the 

one using the BLF decoder is only due to the improved heuristic, the decoder has a larger effect 
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on the outcome of the hybrid technique than the meta-heuristic technique itself. This seems to 

suggest approaches, where more layout specific knowledge is incorporated in the meta-heuristic 

rather than the decoder. However, representation schemes studied by other researchers that use 

more layout information did not necessarily achieve higher packing densities than hybrid 

techniques for the problems tested.  

Concerning the methodology, hybrid algorithms are well suited for industrial demands. The 

layouts achieved are of similar quality as other techniques. The implementation of the hybrid 

algorithm is easier, since it is based well-known techniques and does not require development of 

problem specific algorithms. With heuristics already being applied in industry, the acceptance of 

research methods such as meta-heuristics certainly will be higher. 
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Appendix 

The packing tasks are classified by the problem size, i.e. the number of items. For each category three 

problems instances have been constructed. The dimensions of the items are given in the following 

tables. The optimum solution for each problem is known and is achieved by packing the rectangles in 

the order they are stated in the tables using the BLF routine. 

Category 1: 

16 or 17 items;  

object: 20 x 20 
P1  P2  P3  

w h w h W h 

2 12 4 1 4 14 

7 12 4 5 5 2 

8 6 9 4 2 2 

3 6 3 5 9 7 

3 5 3 9 5 5 

5 5 1 4 2 5 

3 12 5 3 7 7 

3 7 4 1 3 5 

5 7 5 5 6 5 

2 6 7 2 3 2 

3 2 9 3 6 2 

4 2 3 13 4 6 

3 4 2 8 6 3 

4 4 15 4 10 3 

9 2 5 4 6 3 

11 2 10 6 10 3 

  7 2   

 

Category 2: 

25 items,  

object: 40 x 15 
P1  P2  P3  

w h w h w h 

11 3 11 2 12 7 

13 3 2 3 7 7 

9 2 10 7 7 1 

7 2 8 4 5 1 

9 3 9 5 3 2 

7 3 7 2 6 2 

11 2 4 1 7 2 

13 2 6 1 5 2 

11 4 4 5 3 1 

13 4 8 3 6 1 

3 5 1 3 12 6 

11 2 5 5 9 6 

2 2 3 1 12 2 

11 3 12 4 7 2 

2 3 6 2 10 3 

5 4 2 4 4 1 

6 4 11 4 5 1 

12 2 10 2 16 3 

1 2 3 2 5 3 

3 5 11 2 4 2 

13 5 3 4 5 2 

12 4 26 4 10 3 

1 4 8 4 9 3 

5 2 3 2 16 3 

6 2 6 2 5 3 

 

Category 3: 

28 or 29 items,  

object: 60 x 30 
P1  P2  P3  

w h w h w h 

7 5 18 6 24 9 

14 5 12 2 8 9 

14 8 7 10 11 9 

4 8 23 4 17 9 

21 13 1 4 24 4 

7 11 7 7 8 4 

14 11 4 11 6 1 

14 5 5 6 5 1 

4 5 7 2 17 4 

18 3 11 6 6 3 

21 3 19 10 5 3 

17 11 5 11 5 12 

4 11 2 4 13 12 

7 4 5 7 14 14 

5 4 2 4 14 2 

6 7 12 7 2 2 

18 5 13 7 3 8 

3 5 6 3 9 8 

7 3 10 6 14 12 

5 3 16 9 2 12 

18 4 4 1 3 6 

3 4 10 4 9 6 

12 2 24 6 5 2 

6 2 9 9 13 2 

18 5 1 2 18 3 

21 5 5 8 14 3 

17 3 5 3 16 3 

4 3 25 7 12 3 

  21 5   
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Category 4: 

49 items; object: 60 x 60 
P1    P2    P3    

w h w h W h w h w h w h 

2 7 3 3 10 14 2 4 10 4 12 7 

24 7 8 3 3 13 2 7 12 4 9 4 

16 4 5 20 28 5 3 4 13 5 4 4 

18 4 3 17 5 8 5 30 3 5 9 9 

16 7 3 7 14 9 5 3 7 22 2 5 

18 7 5 7 12 14 10 26 6 22 20 5 

2 4 3 7 13 10 6 5 9 23 9 5 

24 4 4 7 3 17 4 9 10 19 4 5 

4 28 4 21 1 5 1 4 3 15 4 2 

6 18 10 19 4 1 9 2 5 13 12 2 

14 12 4 17 18 4 4 17 2 10 3 15 

2 12 8 17 1 1 5 2 2 10 21 11 

18 19 3 10 2 6 4 4 13 18 11 3 

9 8 5 10 4 14 6 2 3 18 3 3 

7 8 7 6 3 18 4 10 2 3 11 23 

9 11 8 6 4 14 2 4 2 3 11 23 

7 11 15 12 8 17 3 12 5 2 11 8 

14 6 3 12 11 5 6 5 4 2 3 8 

2 6 11 10 9 12 3 9 3 4 21 4 

6 10 5 10 4 7 7 18 9 4 14 4 

16 10 4 2 25 8 6 6 7 1 3 13 

3 5 8 2 7 5 18 7 6 1 35 13 

4 5 10 2 24 9 13 9 2 4 11 5 

8 12 12 2 9 14 25 7 20 4 11 5 

3 18   12 19   4 7   



 

26/36 

Category 5: 72 or 73 items; object: 60 x 90 
P1      P2      P3      

w h w h w h w h w h w h w h w h w h 

6 34 10 2 2 3 3 5 1 2 30 10 6 37 5 11 4 2 

3 13 6 6 9 6 14 3 5 1 14 19 10 15 4 5 3 5 

5 13 5 6 9 6 9 27 1 1 4 26 4 7 5 5 4 5 

12 10 7 14 1 6 6 24 3 3 3 3 12 7 1 3 4 24 

12 10 6 14 2 6 21 7 5 20 5 23 4 18 6 3 15 12 

7 6 3 16 7 5 7 10 6 23 5 20 10 8 1 4 13 12 

15 6 5 16 18 5 1 2 7 2 15 4 5 8 6 4 19 7 

7 25 6 14 9 3 13 19 11 21 10 6 4 25 4 2 9 7 

15 25 5 14 9 3 4 17 8 7 6 3 5 25 5 2 5 4 

12 21 13 14 18 9 4 13 6 15 5 2 4 8 19 25 2 4 

7 16 2 3 5 6 17 3 2 1 4 2 12 8 5 9 12 5 

5 16 7 3 2 6 24 10 13 14 3 1 10 10 4 9 9 22 

3 21 2 11 12 2 5 4 3 14 2 3 5 10 3 6 5 1 

5 21 7 11 9 2 2 2 5 26 14 3 3 4 3 6 2 1 

7 5 7 6 3 8 6 1 9 14 9 2 7 4 6 13 15 12 

5 5 6 6 9 8 11 9 10 3 7 8 7 10 20 13 13 12 

1 4 14 33 9 10 4 26 4 13 32 6 2 10 3 18 2 5 

10 4 4 12 5 3 2 1 1 3 6 2 7 15 3 18 5 5 

13 6 3 12 2 3 4 7 14 11 26 5 4 18 5 16 12 17 

13 12 18 16 18 3 7 38 7 10 1 2 15 18 4 16 2 12 

9 12 3 12 7 3 3 2 14 12 6 5 3 18 6 11 5 12 

6 23 18 12 3 2 3 1 18 3 13 3 7 18 13 4 4 5 

3 7 4 4 9 2 4 2 7 4 10 3 7 5 7 4 28 5 

5 7 3 4   4 6 2 7   2 5 13 7   

1 2 1 3   2 1 7 28   4 11 3 2   
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Category 6: 97 items; object: 80 x 120 

P1        P2        P3        

w h w h w h w h w h w h w h w h w h w h w h w h 

30 19 11 6 3 7 4 26 7 39 10 33 6 5 5 2 6 35 5 6 9 4 26 20 

8 5 9 30 3 14 7 26 8 33 1 1 5 13 4 4 1 6 9 21 4 2 5 7 

13 5 10 8 17 7 3 9 7 6 4 4 4 14 8 2 6 6 4 21 5 2 3 7 

15 23 10 8 7 7 21 9 5 3 3 3 16 8 9 11 34 13 5 23 4 25 3 15 

9 4 5 4 5 7 11 31 3 5 4 4 23 9 3 2 10 7 5 23 6 25 8 2 

3 4 5 4 3 7 9 31 39 6 3 6 26 8 5 11 23 7 8 6 6 6 7 2 

2 11 4 14 6 6 6 28 11 13 16 7 1 6 7 9 1 7 15 6 2 6 4 19 

9 7 2 14 4 6 3 19 3 4 6 4 15 26 24 30 6 7 8 5 18 10 6 19 

3 7 4 22 4 2 18 8 2 2 6 2 4 25 2 11 10 62 10 5 11 24 5 25 

8 14 8 14 6 2 3 8 5 2 15 3 8 45 10 8 10 33 5 4 9 4 8 13 

11 6 3 14 9 61 18 11 5 30 30 5 11 50 9 2 13 33 7 2 17 4 7 13 

2 6 10 22 6 8 3 11 2 1 1 1 19 5 10 2 7 22 6 2 7 9 5 8 

11 8 4 20 5 8 10 18 26 11 10 4 12 55 3 11 4 15 6 4 9 5 3 8 

2 8 6 20 5 2 2 6 4 5 2 6 5 20 4 22 6 8 17 4 17 5 8 5 

12 12 2 7 4 2 9 6 9 2 6 23 4 13 6 9 24 8 7 2 6 4 3 5 

2 12 13 2 5 28 2 12 10 29 29 8 15 5 3 3 6 7 6 2 2 4 6 8 

30 10 9 2 4 28 9 12 4 3 26 5 2 6 7 18 24 7 5 8 6 8 2 8 

21 10 13 5 6 29 3 9 5 5 9 17 4 26 5 15 4 7 4 4 20 8 7 12 

15 6 9 5 3 20 12 2 8 2 7 3 12 6 9 13 30 7 9 4 7 42 10 7 

14 6 17 11 21 20 9 2 24 4 19 9 3 1 2 10 6 34 6 8 8 14 37 7 

2 9 7 11 10 39 12 7 22 7 36 6 2 3 6 5 8 17 17 8 18 14 6 4 

22 9 6 18 4 13 9 7 2 9 28 6 3 2 17 5 10 17 4 6 6 34 2 4 

6 16 4 8 7 13   2 2 6 20 1 1   8 16 5 6 5 9   

5 2 2 8 6 22   5 1 20 7 2 3   15 16 4 8 8 7   

5 2 5 7 5 22   9 15 11 2 3 2   5 6 4 4 7 7   
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Category 7: 196 or 197 items; object: 160 x 240 

Items no. 1 - 100 

P1        P2        P3        

w h w h w h w h w h w h w h w h w h w h w h w h 

19 21 33 10 12 23 2 4 15 75 14 5 11 10 1 1 19 15 19 11 17 12 14 23 

6 21 16 9 9 9 4 4 12 80 5 2 5 25 2 1 4 15 3 3 5 15 16 23 

6 18 3 9 16 9 11 11 27 6 7 2 7 26 11 56 8 5 3 3 10 6 6 31 

41 18 8 4 6 18 29 11 3 13 12 9 10 44 10 39 26 5 5 5 15 6 21 22 

22 14 17 4 20 13 10 54 10 3 2 1 19 4 5 5 21 10 35 5 8 50 4 22 

13 14 20 9 21 13 13 54 9 21 12 8 8 31 3 20 5 24 6 17 30 16 4 17 

8 13 19 9 5 25 13 70 8 11 5 28 33 6 2 1 3 7 13 17 6 16 22 17 

14 13 8 15 6 25 7 13 6 13 8 6 11 73 2 7 32 7 24 8 15 10 14 8 

31 20 6 6 19 25 3 13 2 9 35 7 8 27 7 6 26 92 31 8 6 10 16 8 

8 7 5 6 7 16 7 25 51 10 7 14 6 2 13 12 16 92 5 8 10 9 9 4 

14 7 3 6 5 16 2 12 6 6 10 45 2 9 17 34 8 5 35 8 15 9 6 4 

22 54 5 6 9 9 4 12 11 12 4 19 25 9 16 46 26 5 24 5 6 8 20 4 

13 54 17 23 16 9 11 32 2 10 13 17 9 39 1 1 3 17 31 5 5 8 22 4 

6 23 5 28 20 12 22 9 8 12 62 9 9 17 6 13 32 17 5 5 12 40 5 29 

8 13 6 28 21 12 7 9 13 47 36 11 12 7 3 12 10 5 35 5 9 33 38 7 

33 13 11 53 23 10 7 12 14 37 38 18 21 101 6 10 24 5 11 44 6 33 33 7 

6 22 20 6 12 10 3 12 3 11 4 2 3 10 9 15 2 8 12 44 6 37 7 32 

5 22 19 6 7 9 16 33 3 6 9 5 3 7 6 24 19 8 38 17 5 35 5 32 

11 28 3 17 5 9 8 33 1 4 8 3 4 10 1 1 3 7 57 17 21 13 30 49 

19 56 5 17 25 7 14 21 1 6 30 20 8 22 5 7 3 7 13 5 4 13 5 22 

12 56 39 12 6 7 7 21 27 5 6 7 5 3 4 1 13 10 17 5 4 17 9 22 

16 11 8 12 16 47 6 27 14 3 36 10 2 1 2 13 4 27 8 17 22 17 6 37 

3 11 31 8 16 14 6 10 10 4 27 7 1 2 11 9 10 14 36 20 16 34 6 31 

6 20 41 8 8 14 16 10 5 20 17 3 22 59 1 6 24 14 21 20 6 32 16 31 

8 10 23 23 21 16 7 23 3 11 6 4 1 2 3 16 2 11 13 12 5 32 2 7 
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Category 7 cont.: items no.101 - 197 
P1        P2        P3        

w h w h w h w h w h w h w h w h w h w h w h w h 

10 45 29 11 4 9 3 10 7 11 30 8 4 2 6 32 25 7 3 8 4 10 2 4 

7 45 9 26 22 14 6 10 8 15 26 7 6 7 1 5 11 12 12 65 47 10 25 11 

2 10 4 26 9 7 4 24 6 10 16 32 13 3 12 5 33 22 5 5 3 11 8 34 

4 10 17 35 9 7 5 21 6 21 71 25 29 5 7 33 2 5 16 5 12 11 7 7 

16 13 12 6 17 4 21 21 3 9 12 25 2 2 2 8 25 5 6 9 14 7 2 7 

14 6 12 6 3 4 19 21 1 4 22 20 8 15 6 11 27 10 3 9 12 7 10 29 

7 6 4 4 19 17 8 21 10 7 9 55 5 28 9 9 11 10 41 9 3 18 2 10 

2 3 10 4 8 17 19 17 3 3 13 27 8 42 4 27 5 15 17 3 5 18 5 10 

4 3 8 10 8 11 21 17 5 15 65 16 4 27 10 11 9 15 13 3 12 10 59 19 

13 13 13 2 5 11 9 15 2 4 1 3 3 2 38 9 5 30 6 8 9 10 9 23 

14 13 6 2 7 10 5 6 33 8 5 2 18 4 5 7 11 13 8 8 9 49 22 15 

7 8 10 12 20 10 13 6 16 5 16 57 17 5 6 2 30 13 17 6 5 7 3 15 

33 8 3 12 9 7 19 14 9 12 2 1 2 8 3 6 30 21 13 6 3 7 2 9 

16 34 22 16 9 7 4 14 10 11 3 3 2 11 6 2 7 17 5 11 26 11 4 7 

12 28 18 16 19 20 5 9 6 3 3 2 1 2 32 5 5 17 16 11 4 8 1 7 

12 28 7 20 4 20 4 7 10 11 25 11 3 18 12 4 6 24 6 2 47 8 4 2 

7 30 17 16 4 10 9 7 39 8 11 8 17 10 16 3 6 22 10 2 3 7 1 2 

4 19 3 16 26 10 5 3 17 113 6 4 7 5 72 15 10 22 6 7 12 7 7 10 

29 19 13 8 19 11 21 3 13 36 10 9 3 10 14 14 3 2 3 7 12 39 59 10 

10 51 6 8 21 11 4 2 28 8 25 8 5 31 2 6 3 2 8 10 9 39 22 8 

13 51 8 10 3 3 9 2 17 7 10 6 19 9 3 9 8 10 14 3 5 4 3 8 

13 25 19 10 6 3   42 9 12 15 7 8 12 3 6 18 12 3 3 4   

4 21 10 8 18 13   22 57 6 19 10 3   11 8 3 3 51 8   

10 21 3 8 8 27   2 1 2 4 11 37   30 8 5 3 15 8   

4 11 9 9 5 27   15 9 4 7 1 4   3 8 10 26 7 4   
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Figure 15: BL routine (Jakobs, 1996) 
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Figure 16: Bottom-Left-Fill heuristic 
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Figure 17: Average elapsed time per 1000 iterations for heuristics  

 

C7: Comparison between GA and SA 
for BL decoder
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Figure 18: GA and SA + BL for a large problem 
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C3: Comparison of Decoders; Genetic Algorithm
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Figure 19: Comparison of the two GAs combined with BL and BLF routine 

 

 
Figure 20: Best layouts for a large problem (C6) with BL (left) and BLF (right); height-sorted 

sequence 
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C3: Comaprison between local search, 
meta-heuristics and random search
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Figure 21: Comparison between local search and meta-heuristic methods (+BL)  

 

Comparison between GA, NE and random search
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Figure 22: Evolutionary algorithms (GA and NE) and random search for BL for C3 
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C3: Genetic Algorithm and Random Search 
for BL and BLF decoder
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Figure 23: Random search and GAs for both decoders (BL and BLF) 

 

Comparsion between best heuristic solution (BLF) and 
meta-heuristic methods
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Figure 24: Improvement of the meta-heuristics +BLF in comparison to the best of the heuristic 

solutions (BLF including sorted sequences) for each problem category 
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Figure 25: Initial and best layout for GA+BL 
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Figure 26: Initial and best layout for GA+BLF 

 

Comparsion between best heuristic solution (BLF) and 
meta-heuristic methods
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Figure 27: Improvement of the meta-heuristics + BL in comparison to the best heuristic solution 

(BLF) for each problem category 

 


