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Abstract

In this technical report, we introduce a new quality measure meant to be used in mixed—element
meshes. In particular, we focus on tetrahedra, hexahedra, prisms (wedges) and pyramids. This mea-
surement is based on the Jacobian, which is largely used in the context of Finite Element (FE) analysis,
to discard invalid meshes and also, to compare meshes. The proposed measure is contrasted with other
well known quality measures. Finally we propose an alternative to extend this measure to any type of
polyhedron.

1 Introduction

The measurement of quality has two purposes:

e to compare the mesh; either with other meshes produced for the same domain or with the own notion
of a “theoretically perfect” mesh.

e to improve it, i.e., acquire a “better” mesh starting from a poor quality state, by the use of mesh
repairing algorithms.

In both cases we need to count with the notion of a “good” element. This task has been performed for the
most common elements in meshes: the tetrahedron and the hexahedron. However, for other type of elements
this still remains as an open problem. In this report we will introduce a new metric based on the Scaled
Jacobian (Jg), that will serve as a measurement of the quality of mixed—elements . To this purpose, let us
start with one of the most common and accepted notions of quality for the Hexahedron: the Jacobian.

2 Hexahedron quality: Jacobian based.

The Jacobian value of a node can be seen as a measure of “distortion” for a given node with respect to its
neighbors in an element. By it self, this value is not useful as a measurement of quality because it will vary
regarding the distance to other nodes in the element. For instance, consider a regular hexahedron and a
scaled version of it: they will not have the same Jacobian value at their respective nodes. So they must be
normalized somehow.

One approach to perform this task for the hexahedron is the Scaled Jacobian (Jg), and it has been employed
by many authors [3, 4, 7, 1, 2, 8, 6]. Here we say that the Jg of node i, i.e., J& is the Jacobian of the
tetrahedron formed by ¢ and the three connected nodes to it in the element; this “Jacobian” must be
computed using the normalized vectors from 1.



For example, consider the hexahedron of Figure 1(a) with nodes 0,...,7 that will be labeled ny,...,ns
respectively. If we are computing the Scaled Jacobian for node a, i.e., Jg, we define d; = n; — n, and
d; = d;/||d;||. Now we can establish that:

Jg« = Ci4'(0?1Xd3):d1~(623X(J?4):Cig~(624><ci1):1
7& Ci4'(d3><d1):71
With this formulation it is clear that Jg € [—1, 1], and only positive values are acceptable for a FE simulation.
Note that when computing J3, the order of the normalized vectors in the formula: d; - (d; x di) must follow

the right hand rule in the reference system. Otherwise, you will obtain negative values when the element is
actually valid.
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Figure 1: Basic elements: (a) hexahedron, (b) prism (wedge), (¢) pyramid and (d) tetrahedron.

It is very important to keep in mind that Jg is a measurement of quality based on the Jacobian; it is not
the Jacobian itself. The importance of these metrics is to establish when an element is invalid (< 0), when
it is reasonably “good” (0.2 <) and when it is perfect (= 1).

3 Tetrahedron quality: Aspect Ratio Gamma.

The Scaled Jacobian (Jg) is not an accurate way of computing the quality of a tetrahedron. We have already
established that the element is perfect in our scale when it takes the value +1. If we compute Jg for an
equilateral tetrahedron, we will obtain J = v/2/2 ~ 0.7,Vi = {0, 1,2, 3}, however we would expect the value
+1 for each node. Moreover, following this definition the perfect tetrahedron does not exist, due to the fact
that the quality of the element is the worst Jg in the element. Even though a tetrahedron node may reach
Js = 1, it is impossible that all nodes reach this threshold at the same time. And this is as it should be,
because the metric is meant to be used with hexahedra.

For this reason, another type of metric is used when measuring the quality of a tetrahedron. One particular
measure employed by several softwares and libraries like CUBIT, CSIMSOFT, SCIRUN, VERDICT, among others,
is the so called: Aspect Ratio Gamma (ARG); described in [5]. The ARG, when computed with signed volume,
detects the most common cases of invalid and poor quality tetrahedra: flat, needle and inversion (inside out
element). Examples of these types of tetrahedra are shown in Figure 2. The ARG is defined as follows:
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Where [;,¥i = {0,...,5} are its edge lengths and V is the volume of the tetrahedron. Now we have to
put this metric in our reference scale because ARG € [1,00). First, because we consider signed volume, this
section of the equation will detect inverted elements. Now if we define the Scaled Aspect Ratio Gamma as
ARGg = ARG !, we see that ARGg € [—~1,0]U[0, 1] = [1, 1], which is coherent with the scale defined for the
Js.
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Figure 2: Different tetrahedra: (a) equilateral, (b) rectangle, (c) flat 1, (d) flat 2, (e) wedge, (f) sliver, (g)
needle and (h) how an inverted tetrahedron can be formed: due to node displacement, the apex may pass
through the triangular base, which will lead to a negative volume.

A strategy for using something equivalent to Jg for tetrahedra would be to normalize its value, and make
it congruent with the ARGg. This is, it should be 1 when the tetrahedron is equilateral, close to 0 when we
are in presence of needle type or any type of flat tetrahedron, and negative when the element is invalid (see
Figure 2(h)). Let us define the Element Normalized Scaled Jacobian (Jgyg) as:

1+ k") —Js  if Jg > kT 3
Jens = { Js/kT if Jg<kT |, kT = 5 = Js of equilateral tetrahedron. (1)
—(1—|—kT)—JS if Jg < —kT

The reason to choose kT = /2 /2, is that this is the value of Jg at each node of an equilateral tetrahedron.
We use JS/k:T because this allows us to obtain Jgyg =~ 0 in presence of a flat or a needle tetrahedron.
Let us recall that Jg € [—1,1]. It is for this reason that we have to define as special cases, when Jg > kT
or Js < —kT, so the definition of Jgyg is congruent with the range employed by Js. This definition is
particularly useful for methods of quality improvement. Here it is important that the optimal value (+1), is
reached when the node is at an optimal position.

In Table 1, values from the three quality metrics are contrasted for the set of tetrahedra shown in Figure 2:
the ARGg is computed for each element, and then the minimum and maximum value for Js and Jgyg are
also shown for each element. It is clear that the minimum value for these metrics are in direct correlation
with ARGg.

’ H Equi. \ Rect. \ Flatl \ Flat2 \ Wedge \ Sliver \ Needle ‘
] ARGg H 1 \ 0.769 \ 0.004 \ 0.004 \ 0.003 \ 0.005 \ 0.021 ‘
min || 0.707 | 0.5 | 0.003 | 0.002 | 0.002 | 0.002 | 0.005
max || 0.707 1 0.008 | 0.008 | 0.866 | 0.002 0.57

J min 1 0.707 | 0.003 [ 0.003 | 0.002 | 0.003 | 0.007
ENS Mhax 1 0.707 | 0.012 | 0.011 | 0.841 | 0.003 | 0.806

Table 1: comparison of different quality metrics for valid tetrahedra

Now, to have more information on the behavior of these metrics, all the tetrahedra of Figure 2 were built
with a face over plane X Z following the reference system of Figure 1(d). If the apex node (the other node
that is not over X Z plane) is at distance d of plane X7, we can create 7 new tetrahedra putting the apex
at distance —d and re-compute these values. Results are shown in Table 2.

We can see that, different than the case with valid tetrahedra, the maximum value of Jg and Jg g are closer
to the value of ARGg.

Therefore, we say that the Jg of a tetrahedron is the minimum value of Jg at a node, when they are all
positive and the maximum value, when they are all negative. With this definition we are closer to the values



’ H Equi. \ Rect. \ Flat1l \ Flat2 \Wedge \ Sliver \ Needle
[ ArGs [ -1 [-0.769 [ -0.004 [ -0.004 | -0.003 [ -0.005 [ -0.021

J min || -0.707 | -1 | -0.008 | -0.008 | -0.866 | -0.002 | -0.462
S [Tmax || -0.707 | -0.5 | -0.003 | -0.002 | -0.002 | -0.002 | -0.005

J min -1 [-0.707 [ -0.012 | -0.005 | -0.841 | -0.003 | -0.653
ENS Mhax 1 0.707 | -0.004 | -0.002 | -0.002 | -0.003 | -0.007

Table 2: comparison of different quality metrics for inverted tetrahedra

of ARG in all possible cases. Note that if we take the minimum value all the time, for the needle and wedge
tetrahedra we would have negative values away from 0. In contrast, we can now say that if the quality of a
tetrahedron is close to 0, it is very close to become valid or invalid regarding its current sign, while if they
have values close to —1 or +1, it is very unlikely that with a small displacement of a node the element will
change its condition.

One last thing to mention regarding tetrahedra quality is that, ARG and ARGg are computed for the element,
while Jg and Jgyg are computed at the nodes. This is important, once more, for repairing meshing
techniques, that commonly start improving the quality by analysing poor quality nodes. Note that quality
may not be improved by just analysing the worst node. For instance all the nodes of the flat tetrahedra 1
and 2, and the sliver are similar (see Figure 2), while the wedge tetrahedron has two values close to 1 and the
other two close to 0 for the Jgpng. The needle has only one poor quality node and in this case, displacing the
worst node would drastically increase the quality of the element. Finally, note that for inverted tetrahedra
all values are negative for Jg and Jgyg, in other words, the values at the nodes may vary in magnitude, but
not in sign.

4 Pyramid and Prism quality.

With respect to other types of elements, different from the tetrahedron and the hexahedron, there is little
to say in terms of quality measurement. Even though there are some geometry—based quality metrics, it
would be necessary to have a metric that took into account the fact that these elements must coexist among
tetrahedra and hexahedra. For this reason, here we propose an extension of Jgyg for the pyramid and the
prism (wedge). In general terms, all triangular faces should be equilaterals. With this statement we ensure
that if on the other side there is a tetrahedron, it will have the option to reach “perfection”. Following this,
every quadrilateral should be rectangle, so a hexahedron may reach perfection too. Note that for Jg, square
boxes of any shape are considered as perfect elements.

An equilateral pyramid is shown in Figure 3(a). When measuring the quality of this element, we obtain
Jfg = % Vi = 0,...,4. Now, to measure the quality of the top node ¢ we compute J& for the 4 possible
tetrahedra formed by ¢ and its neighbors in the base face. We assign to J% the worst of the four possible
values. Let us recall we are not computing the Jacobian, but defining a quality metric that allow us to
distinguish invalid, poor quality and good elements.

We define the Jgyg for the pyramid exactly as for the tetrahedron, with the same constant k¥ = k7. Now
we can show the quality for the different pyramids of Figure 3(a)—(h) in Table 3.

’ H Equi. \ Rect. \ Sliver \ Wedge \ Flat \ Arrowhead \ Inv. 1 \ Inv. 2 ‘

J min || 0.707 | 0.288 | 0.003 | 0.001 | 0.001 0.002 -0.377 | -0.707
S [Tmax || 0.707 | 1 0.006 1 0.007 0.816 0.707 | -0.707
J min 1 ] 0.408 [ 0.004 [ 0.001 | 0.001 0.003 0533 [ -1
ENS Mhax 1 1 0.008 | 0.999 | 0.009 0.891 1 1

Table 3: The values of Jgyg for the different pyramids shown in Figure 3.
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Figure 3: Different pyramid and prisms: (a) equilateral, (b) rectangle, (c) sliver, (d) wedge, (e) flat, (f)

arrowhead, (g) inverted 1, on the base, (h) inverted 2, top node make all inverted, (i) referential prism, (j)
inverted prism and (k) stretched prism. Marked nodes present negative quality (invalid).

The designed quality metric works as expected: it detects invalid elements, poor quality elements and it
distinguishes good elements from the perfect state. However, we note that, in difference with the tetrahedron,
it is possible to have some positive and negative values among the nodes. If an element has one negative
node, its quality value should be the quality of the element. In order to be congruent with the metrics
for tetrahedra, if the pyramid has more than one negative value, the quality of the element should be the
maximum value among the negative ones. For this reason, the pyramid called Inv. 1 in the table 3 should
have the value of —0.277, which is the maximum among the two negative nodes (the other one is the value
shown in the table: —0.533).

Finally we repeat this procedure by creating a perfect prism: equilateral triangles and rectangular faces;
then we measure the Jg and we notice that all the nodes have a value of v/3 /2, so once more we employ the
same formula as for the tetrahedron and pyramid, only this time we change the constant k% = v/3/2. As in
previous cases, this formula allows to detect invalid elements, poor quality elements and good elements with
one exception. The prism shown in Figure 3(k) is a perfect element according to Jgns. The reason for this
is that the Scaled Jacobian (Jg) quality metric over which Jgyg is built, pays attention to the angles at the
node and not the distances. This will also happen for the hexahedron: any hexahedron with 90° angles will
be considered as the perfect element. Fortunately, the meshing technique described in this article does not
tend to create elements with this shape. The worst ratio for an hexahedron would be equivalent to put 2
regular hexahedra next to each other. In the case of prisms, this ratio is even better.

With all the above we formally define the J3 ¢ quality metric for node n, and the quality of an element E,
as follows:

(1+ k) — Js if Jg > k°

Jpns = & Jg/k® if — ke < Jg <k
7(1+ke)7<]s if Jg < —k°

B min{Jﬁ;NS} if VJ%NS >0

4 max{J& s} Jing <0 if IT5ng <0

Where k€ is a constant value: k¢ = k7 = k¥ = 1/2/2 for the tetrahedron and the pyramid, k¢ = kf = /3/2
for the prism and k¢ = k¥ = 1 for the hexahedron. The quality of an element (Eq) will be the minimum
value of Jgns at one of its nodes, if all Jgyg at the element are positive; and will be the maximum value
of Jgns among its negative nodes, when at least one is negative.

Finally, if other type of element was employed, we would need to create a version of it where all its faces
should be equilateral, then measure the Jg to find its constant and employ the same formula introduced
here.



5 Conclusions.

The focus of this report was to establish a quality metric to be used when the mesh has mixed-elements. We
call this metric Element Normalized Scaled Jacobian Jgxng, which is based on the widely accepted Scaled
Jacobian Jg for hexahedral meshes. In this work we adapted the Jg to measure the quality of tetrahedra
and we contrasted this new metric to a widely used metric for measuring tetrahedron quality, the Aspect
Ratio Gamma ARG. The values we obtained were similar when measuring poor quality tetrahedra.

Once the Jgnyg was established for hexahedral and tetrahedral elements, it was easy to extend it to the
Pyramid and Prism. If other type of element was employed, we would need to create a version of it where
all its faces should be equilateral, then measure the Jg to find its constant and employ the same formula
introduced at the end of section 4.

Now, one of the main advantages of having a metric that serves for different types of elements, is to be able
to use it in repairing methods. Several of these algorithms use a quality metric to determine over which
direction the node should be displaced in order to increase the quality of the elements attached to it. If
we use different functions to measure the quality of each type of element it is sometimes not clear which
direction will increase the quality of the system. This should be analysed in more details in further works.
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