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Abstract

Current approaches to component-oriented programming are based on
traditional object-oriented languages and concepts. However, most exist-
ing object-oriented languages fail to address subtle interface compatibility
issues that become paramount in a component-based setting. We explore
both syntactic and semantic interface incompatibilities and discuss why
they are difficult to handle. We argue that resolving these incompat-
ibilities requires breaking with a fundamental idiom of object-oriented
languages: the subordination of messages to interfaces and classes. We
propose a solution based on the concept of stand-alone messages as found
in the experimental programming language Lagoona and discuss its ram-
ifications.

1 Introduction

Component-oriented programming aims to replace traditional monolithic soft-
ware systems with reusable software components and layered component frame-
works [34]. Components extend the capabilities of frameworks, while frame-
works provide an execution environment for components. Both are developed
by independent and mutually unaware vendors, and their composition into a
running system is performed by a third party, possibly the end-user.

A component-based approach to software development promises many ad-
vantages, almost all of which result from the possibility of vendors specializing in
a single domain of expertise. For example, instead of developing a complete text
processing application, independent vendors can concentrate on providing doc-
ument versioning, spell-checking, hyphenation, or intelligent assistants within a
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common text processing framework. Development resources can thus be con-
centrated on a single component (or a single framework), hopefully increasing
its reliability and efficiency beyond what would be possible otherwise.

One of the most important factors for making the vision of pervasive software
components a reality are interfaces. An interface is an abstraction of all possible
implementations that can fill a certain role in the composed system [22]. This
abstraction allows us to concentrate on what is required of an implementation
to fulfill its task and to disregard irrelevant details. In the component-based
setting, interfaces are used to describe both the assumptions that frameworks
make about components and the assumptions that components make about
frameworks.

In programming languages, interfaces are usually only syntactic in nature.
Behavioral specifications that implementations are expected to conform to are
given as informal comments, and type-systems are used to guard against a
subset of possible errors [8, 34]. More elaborate techniques that merge formal
specifications and programming languages also exist, but are much less widely
accepted [39]. However, even with those techniques, behavioral conformance of
an implementation to an interface cannot in general be proven automatically as
doing so would entail solving the halting problem [30].

In this paper, we take the point of view of component vendors as opposed
to framework vendors. The major task of a component vendor is to develop a
software component that conforms to the interface specified by a framework ven-
dor. However, certain components might only be viable as products if they can
be reused across multiple frameworks. For example, a specialized hyphenation
component for an “exotic” language will only be interesting to a limited market
segment. To broaden its potential market such a component should be usable
across multiple text-processing frameworks. Since the respective interfaces have
been specified independently, conforming to multiple interfaces can complicate
the task of the component vendor considerably. These complications are in fact
the main motivation for this paper as will become obvious in Sect. 2. Note
that similar problems also occur when independently developed frameworks are
combined.

Object-oriented programming has been described as a foundation technol-
ogy for software components [34, 37]. Indeed, conventional object-oriented pro-
gramming languages like Java [1] and C++ [32] are often used to implement
components. Component interfaces, on the other hand, are usually described
using an interface definition language (IDL). These IDLs are specific to a cer-
tain component model such as COM [5, 11] or CORBA [17], and also have
an object-oriented character. The resulting complexity of this approach can
be daunting and prompted us to investigate simpler alternatives [13, 14, 19].1

In particular, we are interested in designing a programming language—code-
named Lagoona—that provides only what is essential in a component-based
setting, but not more.

1Note that at least in the case of COM, the underlying core model is not complex at all.
We discuss COM and its relation to our work in more detail in Sect. 6.
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A first insight gained from the Lagoona project is that most current object-
oriented languages are by themselves unsuitable as a basis for component-
oriented programming. They fail to properly address certain interface incom-
patibilities that arise when a component must implement several interfaces, each
defined by an independent framework vendor. Furthermore, neither the compo-
nent vendor nor the composing end-user can resolve these incompatibilities in
a straightforward way. Surprisingly, we can trace the incompatibility problems
back to a fundamental idiom found in object-oriented languages: the subordi-
nation of messages to interfaces and classes. Our conclusion is that breaking
with this idiom is the only clean way to solve the problem.

The remainder of this paper is organized as follows. Section 2 illustrates
the interface compatibility problems through a series of examples in a Java-like
language. Section 3 analyzes syntactic and semantic incompatibilities in detail
and explains their origin in the object-oriented paradigm. Section 4 introduces
the concept of stand-alone messages and shows how it solves the compatibility
problems through as series of examples in the programming language Lagoona.
Section 5 gives a brief overview of additional Lagoona language features. Sec-
tion 6 reviews related work and compares it to our approach. Section 7 concludes
the paper with a summary of contributions and an outline for future work.

2 Interface Compatibility Problems

We illustrate the interface compatibility problems in object-oriented languages
through a series of examples based on the infamous abstract data type Stack.
Independent framework vendors specify Stack interfaces that implementations
have to conform to. Playing the role of a component vendor targeting the tiny
market for Stack components, we want to ensure that our implementation can
be reused across all frameworks.

To make the examples more concrete, we assume an imperative, class-based,
object-oriented programming language similar to Java [1]. We ignore features
that would only complicate the discussion without solving the problems we
want to illustrate. In particular, we disregard visibility specifiers, ad-hoc poly-
morphism (overloading), and parametric polymorphism (templates). In spirit
our language is also similar to BOPL [29], an idealized object-oriented language
that models common features of Simula, Smalltalk, C++ and Eiffel. In contrast
to BOPL we support separate type and class hierarchies. Mapping component
instances to objects, component implementations to classes, and component
interfaces to (Java-like) interfaces seems natural in such a language.

The interface of the first framework, shown in Fig. 1, specifies the four
canonical operations on (unbounded) stacks rather informally, although some
relevant pre- and postconditions are also stated. Our implementation of this
interface in terms of the Java utility class java.util.Vector is given in Fig. 2.

Now consider how this implementation can be made conformant to another
interface, shown in Fig. 3. Apart from pop and top being specified in terms of
size, their signatures and semantics are unchanged from the previous interface
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package framework1;
interface Stack {

// Add object to stack as topmost object.
// require o != null; ensure this.top () == o;
void push (Object o);
// If stack not empty, remove topmost object.
// require !this.empty();
void pop ();
// If stack not empty, return topmost object.
// require !this.empty(); ensure result != null;
Object top ();
// No object on stack?
boolean empty ();

}

Figure 1: An interface for the abstract data type Stack.

package component;
class Stack implements framework1.Stack {

java.util.Vector rep = new java.util.Vector ();
void push (Object o) { rep.add(0, o); }
void pop () { rep.remove(0); }
Object top () { return rep.elementAt(0); };
boolean empty () { return rep.size() == 0; };

}

Figure 2: Our implementation conforming to Fig. 1.
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package framework2;
interface Stack {

// Add object to stack as topmost object.
// require o != null; ensure this.top () == o;
void push (Object o);
// If stack not empty, remove topmost object.
// require this.size > 0;
void pop ();
// If stack not empty, return topmost object.
// require this.size > 0; ensure result != null;
Object top ();
// Number of objects on stack?
// ensure result >= 0;
int size ();

}

Figure 3: An interface compatible with Fig. 1.

package component;
class Stack implements framework1.Stack, framework2.Stack {

java.util.Vector rep = new java.util.Vector ();
void push (Object o) { rep.add(0, o); }
void pop () { rep.remove(0); }
Object top () { return rep.elementAt(0); };
boolean empty () { return this.size() == 0; };
int size () { return rep.size(); }

}

Figure 4: Our implementation conforming to Fig. 1 and Fig. 3.
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package framework3;
interface Stack {

// Add object to stack as topmost object.
// require o != null;
void push (Object o);
// If stack not empty, remove and return topmost object.
// require !this.empty(); ensure result != null;
Object pop ();
// No object on stack?
boolean empty ();

}

Figure 5: An interface syntactically incompatible with Fig. 1 and Fig. 3.

(Fig. 1). Furthermore, we can easily map the value returned by size to the
meaning of empty. Our modified implementation given in Fig. 4 conforms to
both interfaces, thus doubling our potential market share.

We say that two interfaces are compatible if we can define a single implemen-
tation that conforms to both. As Fig. 4 illustrates, the interfaces from Fig. 1
and Fig. 3 are compatible in this sense. If no implementation can sensibly con-
form to both interfaces, we say that the interfaces are incompatible. Note that
this notion of compatibility naturally depends on the programming language at
hand. However, we were careful to include only common object-oriented fea-
tures in our discussion. We are therefore confident that the definition makes
sense for a large number of object-oriented languages.

The interface published by the third framework vendor is shown in Fig. 5
and seems to be inspired by the Java utility class java.util.Stack. The lack
of a top message in this interface poses no obvious problem for interface com-
patibility. However, the new signature of pop makes this interface syntactically
incompatible with those shown in Fig. 1 and Fig. 3. In the purely object-oriented
paradigm that we are considering here, two messages with the same name but
different signatures cannot be part of the same interface or class, because sig-
natures are not considered during message sends and method selection. Neither
extending our model in the direction of Smalltalk [16], where the number of
parameters is relevant for method selection, nor using the non-object-oriented
overloading mechanisms of Java or C++ helps to disambiguate the two messages
in this example.2

Finally, consider the interface from the fourth framework, shown in Fig. 6.
Since push, pop, top, and empty are unchanged from the interfaces in Fig. 1 and
Fig. 3 we can concentrate on the remaining size message. It has a signature
that is identical to the signature of size in Fig. 3. However, its semantics are

2Since the messages only differ in their return types, the resolution mechanisms would have
to be context-dependent [32].

6



package framework4;
interface Stack {

// Add object to stack as topmost object.
// require o != null; ensure this.top () == o;
void push (Object o);
// If stack not empty, remove topmost object.
// require !this.empty();
void pop ();
// If stack not empty, return topmost object.
// require !this.empty(); ensure result != null;
Object top ();
// No object on stack?
boolean empty ();
// Pushes until internal resize?
// ensure result >= 0;
int size ();

}

Figure 6: An interface semantically incompatible with Fig. 3.

changed, from returning the number of actual objects on the stack, to returning
the number of “free spaces” still available until some internal resize operation
occurs in the implementation. The new size message makes this interface
semantically incompatible with the one in Fig. 3, since there is no way to distin-
guish two semantically different messages with identical names and signatures
in the same interface or class.

3 Messages in Object-Oriented Languages

The examples in the preceding section illustrate the problem of interface incom-
patibility in object-oriented programming languages. We can summarize it as
follows:

• Two interfaces are compatible if both can be implemented by a single
component; otherwise they are incompatible.

• Two interfaces are syntactically incompatible if they assign conflicting
signatures to the same message.

• Two interfaces are semantically incompatible if they assign conflicting
meanings to the same message.

In a component-based setting as described in Sect. 1, both syntactic and seman-
tic incompatibilities will occur eventually. The main reason for this is the lack
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asig �= bsig asig = bsig

aid �= bid No conflict No conflict
aid = bid Syntactic conflict Semantic conflict

Figure 7: Possible outcomes of combining messages a ∈ A and b ∈ B.

of coordination among framework vendors. However, this lack of coordination
is also one of the main requirements for the component-based approach to work.
Controlling free markets in a centralized fashion has not proven successful in
the past. Hence, we would like to prevent interface incompatibilities without
enforcing a stricter coordination policy.

The crux of the problem can be found by examining the mechanism used to
combine existing interfaces into new ones. In object-oriented languages, mes-
sages are pairs of identifiers and signatures. The identifier describes the name of
a message, while the signature describes the types of its arguments and results
(possibly including declaration order). Interfaces are sets of messages, i.e., each
message has a unique identity within the interface, namely its identifier. Note
that polymorphic method invocation is based on exactly this identity.

If two interfaces A and B are to be combined into a new interface C, the
resulting interface must again be a set to be consistent with the object-oriented
model. As long as no two messages a ∈ A and b ∈ B share the same identifier
aid = bid (i.e., A ∩ B = ∅), the combination of interfaces can be described as
the union C = A ∪ B. However, if two messages a ∈ A and b ∈ B actually do
share the same identifier, syntactic or semantic incompatibilities can result. As
shown in Fig. 7, the actual incompatibility depends on the signatures asig and
bsig. Figure 8 illustrates how messages “fall out” of their originating interfaces
into a new one (for brevity we use single parameter signatures).

In case of identical names and identical signatures, two messages from differ-
ent interfaces are folded into a single message in the resulting interface (message
“c” in Fig. 8). If the messages had different (informal) meanings in their re-
spective interfaces, we can not distinguish them anymore, and the interfaces are
semantically incompatible. In case of identical names and different signatures,
the two messages cannot both be included in the resulting interface, as method
invocation is only driven by the message identifier (message “b” in Fig. 8).3

The object-oriented “tradition” seems to be that semantic conflicts are silently
accepted by the compiler, while syntactic conflicts result in error messages. We
speak of a “tradition” since resolving both kinds of conflicts in exactly this way
is obviously an ad-hoc decision.

The only way to address these incompatibilities is to give messages a unique
identity that is independent of the interfaces or classes they participate in. At
the heart of the interface compatibility problem, we thus find a fundamental
limitation of many current object-oriented languages. Messages are considered

3As pointed out in Sect. 2, the Smalltalk approach of including the number of parameters
into the dispatch process is not a general solution either.
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Interface A Interface B

(“a”,int)

(“b”,char)

(“c”,float)

(“x”,void)

(“b”,int)

(“c”,float)

���
✏✏✏

Interface A ∪ B

Figure 8: Messages are “falling out” of interfaces A and B into a new one.

subordinate to interfaces (classes) rather than having a unique identity of their
own. This is somewhat surprising if we consider the classic definition of the
object-oriented paradigm [20]:

• Everything is an object.

• Objects communicate by sending . . .messages (in terms of objects).

• Objects have their own memory (in terms of objects).

• Every object is an instance of a class (which must be an object).

While we do not agree with this definition completely, it is easy to see that it
does not relegate messages to an inferior status. In particular, it could be argued
that a message should itself be an object, similar to a class. However, even in
Smalltalk [16], where this definition was first applied, messages are subordinate
to classes.

An alternate explanation of this fundamental problem in the object-oriented
paradigm can be found in its attempt to unify two distinct concepts: modules
and types. It has often been argued that classes (and thus interfaces) are “better
modules,” because they support encapsulation and extension [24]. Modules
support only encapsulation, while types (in the sense of extensible record types)
support only extension. However, in light of the above discussion it should be
clear that messages cannot safely be subordinate to entities that keep changing
through extensions. To retain a unique identity, messages have to be subordinate
to some “stable anchor” that ensures that the same message always represents
the same meaning. Modules can fill exactly this role.
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It could be pointed out that an object-oriented language like Java already
supports “messages” with unique identities. For example, we could model “mes-
sages” as a hierarchy of classes and “message sends” as a general dispatch mes-
sage similar to the “Command” design-pattern [15]. However, such an approach
is both clumsy and unsafe. It is clumsy because parameter passing and type-
tests must be performed explicitly, and it is unsafe because the compiler can
not statically enforce type-safety. In a component-based setting this approach
is especially useless for the latter reason.

Some object-oriented languages also support additional mechanisms not con-
sidered so far. In Eiffel [23] for example, conflicting messages can be renamed
in a derived class. However, this is either not type-safe or leads to semantic in-
compatibilities. If all messages are given new and unique names, message sends
using the conflicting name will lead to run-time errors or invoke the method of
a base class. For abstract base classes (the equivalent to interfaces) the latter
again results in a run-time error. On the other hand, if one message retains
the conflicting name, message sends that expect different behavior will invoke
a semantically incompatible method.

Another mechanism is used in C++ [32], where message sends can be explic-
itly qualified by the class in which a method should be invoked. However, this
results in static binding, not in dynamic method selection. The idea of explicit
qualification points towards another solution though. We could require that
messages are always explicitly qualified by the interface that first introduced
them, thus giving them a unique identity across other interfaces and classes.
However, interfaces themselves are not necessarily unique. In Java for example,
two interfaces with the same name and identical messages could be declared in
two different packages. If both interfaces are to be combined, we would have
to extend explicit qualification to package names. However, since packages in
Java are also not “closed” in the sense of modules in languages such as Ada
or Modula-2, we would also have to replace the package concept with a “real”
module concept. Starting out with a “real” module concept seems preferable to
us, and is in fact the solution we adopt in Lagoona.

4 Stand-Alone Messages in Lagoona

The analysis in Sect. 3 shows that support for component-oriented programming
is fundamentally limited in object-oriented languages. To avoid syntactic and
semantic incompatibilities between component interfaces, messages must have
unique identities that are independent of the interfaces or classes they partici-
pate in. In this section, we introduce the concept of stand-alone messages. We
will again use a series of examples based on the abstract data type Stack, this
time expressed in the experimental programming language Lagoona [13].

Lagoona is an imperative, modular, and object-oriented4 programming lan-
guage loosely based on Oberon [31]. The basic compilation unit is the module

4For obvious reasons, we use the term “object-oriented” somewhat reluctantly, but the
better term “component-oriented” does not have an established meaning yet.
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MODULE Framework1;
MESSAGE

(* Add object to stack as topmost object. *)
(* REQUIRE o # NIL; ENSURE Top() = o; *)
Push (IN o: ANY);
(* If stack not empty, remove topmost object. *)
(* REQUIRE ~Empty(); *)
Pop ();
(* If stack not empty, return topmost object. *)
(* REQUIRE ~Empty(); ENSURE result # NIL; *)
Top (): ANY;
(* No object on stack? *)
Empty (): BOOLEAN;

TYPE
Stack = {Push, Pop, Top, Empty};

END Framework1.

Figure 9: A Lagoona interface for the abstract data type Stack.

as opposed to the class or interface in conventional object-oriented languages.
Modules contain declarations of constants, variables, messages, types, proce-
dures, and methods.

Figure 9 shows the Lagoona equivalent to the stack interface originally given
in Fig. 1 above. As before, we disregard visibility considerations in these ex-
amples. However, we do not make other simplifications to the language for
presentation purposes. Note that stand-alone messages are introduced in the
module scope, on the same level as all other declarations in Lagoona (except for
local variables, of course). In particular, messages are not subordinate to a type,
although so-calledmessage set types can be formed out of a number of messages.
Message set types can be used to reference objects that implement all messages
mandated by the type. A variable of type Framework1.Stack could either ref-
erence an object implementing at least Framework1.Push, Framework1.Pop,
Framework1.Top, and Framework1.Empty, or no object at all (denoted by NIL).

As before, we associate an informal specification with each message. How-
ever, since messages in Lagoona have a unique identity, a message always refers
to exactly that specification. In a manner similar to conventional type-checking,
this allows guarding against accidentally using one message where another is
required. In particular, neither syntactic nor semantic incompatibilities are
possible at the interface level in Lagoona.

An implementation conforming to the interface given in Fig. 9 is shown in
Fig. 10. For simplicity, we assume the presence of an utility class, just like
in Sect. 2. Note how the implementation explicitly imports and qualifies each
message it implements or sends. Module identifiers are formed out of “inverted”
domain names in Lagoona—similar to the approach taken for package names
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MODULE Component;
IMPORT

F1 := Framework1, V := Com.Lagoona.Util.Vectors;
TYPE

Stack = RECORD rep: V.Vector; END;
METHOD (OUT self: Stack) INITIALIZE ();

BEGIN NEW (self.rep);
END INITIALIZE;
METHOD (INOUT self: Stack) F1.Push (IN o: ANY);

BEGIN V.Add (0, o) -> self.rep;
END F1.Push;
METHOD (INOUT self: Stack) F1.Pop ();

BEGIN V.Remove (0) -> self.rep;
END F1.Pop;
METHOD (IN self: Stack) F1.Top (): ANY;

RETURN V.ElementAt (0) -> self.rep;
END F1.Top;
METHOD (IN self: Stack) F1.Empty (): BOOLEAN;

RETURN V.Size (0) -> self.rep = 0;
END F1.Empty;

END Component.

Figure 10: Our Lagoona implementation conforming to Fig. 9.

Module A Module B

(“a”,int)

(“b”,char)

(“c”,float)
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Figure 11: Messages retain their identities even in new interfaces.
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in Java—and can thus reasonably be expected to be unique. To distinguish
message sends from conventional “method calls” we use the operator “->” in-
stead of the more common dot notation. The INITIALIZE method is invoked
implicitly as an initializer whenever an object of this type is created.

The concept of stand-alone messages in Lagoona is illustrated in Fig. 11.
Compared to the conventional object-oriented mechanism from Fig. 8 above,
messages retain a unique identity (and thus the meaning they are informally
given in the module they are defined in), even if they are composed into new
interfaces in other modules.

A somewhat extreme example of the power of stand-alone messages is an
implementation conforming to all four stack interfaces we introduced in Sect. 2.
Such an implementation is shown in Fig. 12, assuming that the appropriate
interfaces—which we omit for brevity—have been defined in Lagoona. Note
how Lagoona enables the component vendor to use his knowledge about the
specifications of individual messages to provide a single method implementa-
tion for multiple message specifications. Thus duplication of method bodies can
be avoided and no additional forwarding methods have to be introduced. Com-
pared to the interface shown in Fig. 9, the other interfaces that this component
implements differ as follows:

• Framework 2 uses Size instead of Empty.

• Framework 3 omits Top and returns objects through Pop.

• Framework 4 attaches different semantics to Size.

The resulting implementation can be reused unchanged across all four frame-
works.

5 Additional Features of Lagoona

In the previous section we have illustrated how Lagoona’s stand-alone messages
can be used to solve the interface compatibility problem. In this section we
discuss some additional features of Lagoona that were designed to better support
a component-oriented programming style.

We already briefly introduced message set types above. The main pur-
pose of declaring a named message set type such as Framework1.Stack is
to give a convenient name to a set of messages, nothing more. Message set
types support “set-like” union and difference operations. For example, given
messages A, B, C, and D, the type S = {A, B, C} could also be expressed as
S = {A} + {B, C} - {D}. Compatibility between two message set types is de-
fined using a subset relation between the sets of messages they denote. Given the
type T = {A, B, C, D} and variables s: S and t: T, the assignment s := t
is legal, while the reverse assignment t := s is not. The obvious consequence of
this definition is that type compatibility between message set types is structural.
However, this structural compatibility is nevertheless safe in Lagoona because
individual messages have and retain unique identities.
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MODULE Component;
IMPORT

F1 := Framework1, F2 := Framework2, F3 := Framework3,
F4 := Framework4, V := Com.Lagoona.Util.Vectors;

TYPE
Stack = RECORD rep: V.Vector; END;

METHOD (OUT self: Stack) INITIALIZE ();
BEGIN NEW (self.rep);

END INITIALIZE;
METHOD (INOUT self: Stack) F1.Push, F2.Push, F3.Push, F4.Push (IN o: ANY);

BEGIN V.Add (0, o) -> self.rep;
END F1.Push, F2.Push, F3.Push, F4.Push;
METHOD (INOUT self: Stack) F1.Pop, F2.Pop, F4.Pop ();

BEGIN V.Remove (0) -> self.rep;
END F1.Pop, F2.Pop, F4.Pop;
METHOD (INOUT self: Stack) F3.Pop (): ANY;

RETURN V.Remove (0) -> self.rep;
END F3.Pop;
METHOD (IN self: Stack) F1.Top, F2.Top, F4.Top (): ANY;

RETURN V.ElementAt (0) -> self.rep;
END F1.Top, F2.Top, F4.Top;
METHOD (IN self: Stack) F1.Empty, F3.Empty, F4.Empty (): BOOLEAN;

RETURN F2.Size () -> self = 0;
END F1.Empty, F3.Empty, F4.Empty;
METHOD (IN self: Stack) F2.Size (): INTEGER;

RETURN V.Size () -> self.rep;
END F2.Size;
METHOD (IN self: Stack) F4.Size (): INTEGER;

RETURN MAX(INTEGER); (* fake value *)
END F4.Size;

END Component.

Figure 12: Our Lagoona implementation conforming to all four interfaces.
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Furthermore, the combination of set-like operations and structural compat-
ibility enables the expression of subtyping as well as supertyping in a straight-
forward way. Thus variables and formal parameters can be typed “as little as
possible” to exactly specify the relevant requirements. For example, a method X
that only applies the Framework1.Pushmessage to some object can be declared
as X(stack:{Framework1.Push}); instead of having to mandate an implemen-
tation of the complete Framework1.Stackmessage set.

Implementations (classes) are modelled as object types in Lagoona, which
basically are record types with attached methods as shown in Fig. 10 and Fig. 12.
This idea is fairly standard, except for the fact that object types do not declare
which message sets they implement explicitly. Furthermore, the structural type
compatibility mechanism introduced between message set types is reused. A
variable of object type A can be assigned to a variable of message set type B
if and only if A implements all messages denoted by B. However, between two
object types, name-based compatibility is used. Type compatibility between
message set types and object types is checked when they are actually used in
assignments or as actual parameters. This supports the evolution of software
components better than static declarations do, at the price of detecting some
type-errors “slightly” later than possible with explicit declarations.

Message sends and method dispatch is more interesting, since Lagoona does
not support any kind of inheritance (in the sense of reuse of field or method
declarations). Instead, a generic message forwarding mechanism is provided.
Avoiding inheritance (and delegation) helps to guard against certain problems
caused by the self-referential nature of these mechanisms. It has been shown
that restricting inheritance (and delegation) in order to make them safe in a
component-based setting essentially results in making them equivalent to for-
warding [25, 26, 37].

Our generic forwarding mechanism works as follows. When an object receives
a message, and a corresponding method implementing this message exists in the
object type, that method is executed. If no matching method is found, but the
special method DEFAULT is implemented, it is executed instead. Inside a default
method we can resend the message to other objects. However, resending is a
generic operation in which the actual message remains opaque. Note that an
empty default method can be used to ignore all messages an object does not
explicitly implement. Finally, if no matching method and no default method
exists, execution is aborted with an exception.

For this flexible message forwarding approach to be safe, some restrictions
on message sends have to be imposed. In particular, for messages that return
a result, we must be able to statically determine whether they are handled or
not. Otherwise using the result of the message send would be unsound. In
Lagoona, we decided to offer two clear alternatives to the programmer. If a
message is sent to a message set variable, it must statically exist in the set of
messages denoted by the corresponding message set type. Note that this rule
applies to functional and non-functional messages. If a message is sent to an
object type variable, and if the message returns a result, an implementation
for it must statically exist in the object type. If the message does not return
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a result, the message might be handled (possibly after multiple forwards), it
might be ignored, or an exception might be raised. Thus developers can decide
on the exact message-handling semantics they need at a fine-grained level.

6 Related Work

Previous work related to the problem of interface incompatibility has been sur-
prisingly hard to find. The only reference we are aware of is the work of Ossher
and Harrison on combining separate inheritance hierarchies [28]. Ossher and
Harrison also identified the distinction between syntactic and semantic con-
flicts, however they did not propose a concrete approach how these conflicts
could be addressed at the language level.

The use of structural conformance to increase the expressiveness of type-
systems has also been advocated by Baumgartner, Läufer, and Russo, for C++
[2] and more recently for Java [21]. They give a number of good motivating
examples, although not from the perspective of component-oriented program-
ming. However, their proposals neither handle the problem of “accidental”
conformance in an elegant way (messages are still subordinate to signatures)
nor address the interface compatibility issues we have been concerned with. On
the other hand, their conformance relation is more flexible than ours, since it
allows contravariance of parameter types, covariance of result types, and several
other mechanisms to be taken into account.

Büchi and Weck also argue for some degree of structural conformance in their
compound types proposal for Java [6]. They provide a good motivation from a
component-oriented perspective and show that explicitly declared compatibility
has severe drawbacks in this setting. Compound types combine declared and
structural type compatibility in order to maintain the relation between named
types and specifications on the one hand, while allowing for flexible compositions
of multiple named types on the other hand. Thus, compound types can be used
to model composition of interfaces more flexibly while at the same time support-
ing type-safety and type-based checking of specifications. However, compound
types are actually a special case of Lagoona’s stand-alone messages, and our
approach shows that their claim that “. . . structural equivalence . . . does not
support behavioral typing. . . ” is not necessarily true if messages have unique
identities. Furthermore, their work also does not address issues of interface
compatibility.

Finally, the idea of stand-alone messages is also related to research on multi-
methods in object-oriented languages. In a language with multi-methods such as
Cecil [9], stand-alone messages could be “emulated” by introducing an additional
dispatch parameter modelling the originating module. However, multi-methods
are not yet widely accepted and are not supported in mainstream languages.
They also lead to a more functional style of programming that adherents of
the object-oriented style sometimes dislike. Furthermore, supporting type-safe
multi-methods in the presence of separate compilation is still an active area of
research [27]. Efficiency considerations also have to be taken into account and
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are not clearly understood. We argue that stand-alone messages are conceptu-
ally simpler because they only rely on the established notion of modules and
add no additional concerns for separate compilation. They also maintain the
established, object-oriented programming style.

As far as component-models are concerned, the approach taken in COM
[5, 11] seems to be most similar to Lagoona. Instead of giving unique identi-
ties to messages, COM assigns unique identities to interfaces using automati-
cally generated globally unique identifiers (GUIDs). Interfaces are “frozen” once
they are published, ideally together with the associated semantics. Contrary to
the object-oriented programming languages we examined, COM allows a class
to implement multiple interfaces without merging them, i.e. interfaces retain
their unique identity across all classes that implement them. It therefore seems
straightforward to model some of Lagoona’s features in COM. Stand-alone mes-
sages could be expressed using “singleton” COM interfaces consisting of only
one message, while message-set types could be expressed using COM’s category
mechanism.5

In contrast to the core model of COM sketched above, the actual COMmodel
is much more complex. Since COM is a language-neutral standard, many ad-
ditional features must be exposed in order to allow low-level languages such as
C and C++ to be integrated. For example, programmers have to be aware of
the complex details of memory management and in-processes vs. out-of-process
COM servers and their specific restrictions. Aspects of persistence and distri-
bution are also part of the COM specification, even though they do not seem
to be of central importance to a component-oriented programming style. It is
possible to hide some of COM’s complexity via so-called Direct-To-COM com-
pilers, for example by providing automatic garbage collection on top of COM’s
reference counting [18]. However, it seems that even the designers of COM are
sometimes overwhelmed by its complexity, as evidenced by the recent discovery
of an inconsistency within COM itself [33].

7 Conclusions

Component-oriented programming requires that component and framework in-
terfaces are explicitly specified. A single component must also be able to im-
plement multiple interfaces. In traditional object-oriented languages, we have
shown through a series of examples how the second requirement can—and even-
tually will—lead to interface compatibility problems, either of a syntactic or a
semantic nature. We have argued that the root of this problem can be traced
back to the fact that most current object-oriented languages reduce messages
to inferior constructs subordinate to interfaces and classes.

5It might indeed be interesting to investigate this similarity in more detail by developing
an implementation of Lagoona on top of COM. Such an implementation could leverage the
wide support COM has gained in industry while offering a considerably simpler programming
model to the software developer.
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Message ∈ Type Message ∈ Module
Method ∈ Type Object-Oriented:

C++, Eiffel, Smalltalk
Component-Oriented:
Lagoona

Method ∈ Module Useless? Modular:
Ada, Modula-2

Figure 13: Language design space for messages and methods.

We have proposed stand-alone messages as a solution to this problem and
have illustrated their application through another series of examples, show-
ing that they can solve both syntactic and semantic interface incompatibilities.
Furthermore, we have briefly described the experimental programming language
Lagoona that supports stand-alone messages and other constructs facilitating a
component-oriented programming style.

Figure 13 illustrates the language design space we have explored in devel-
oping Lagoona. Messages (the building blocks for interfaces) and methods (the
building blocks for implementations) can be subordinate to either types or mod-
ules. In the object-oriented paradigm, both are subordinate to types, leading to
the interface compatibility problems described above. In the modular paradigm,
both are subordinate to modules, and no interface incompatibilities can result.
However, the modular paradigm does not allow us to express the idea of imple-
mentation polymorphism, i.e. the ability to dynamically exchange conforming
implementations “behind” an interface.

The component-oriented paradigm seems to require a combination in which
messages are subordinate to modules in order to retain their unique identity,
while methods are subordinate to types in order to model implementation poly-
morphism. Note that we still need a way of typing variables with interfaces,
which is the purpose of message set types in Lagoona. Finally, messages could
be made subordinate to types and methods subordinate to modules. However,
this does not seem to yield an interesting programming paradigm, and we are
not aware of any languages in this category.

Future work will focus on improving Lagoona in various ways so as to still
better support component-oriented programming. Numerous interesting prob-
lems in this direction have not been addressed so far. For example, issues of
abstract aliasing and representation exposure become important in a language
that achieves code-reuse purely through forwarding between black-box compo-
nents. In particular, we plan to investigate extending Lagoona to provide static
guarantees about the possible aliases that can be created at runtime [10, 12, 36].
Another important area is the formalization of Lagoona’s type-system and a
proof of its soundness, especially in the presence of separate compilation [8].
We are also interested in more sophisticated approaches to interface specifica-
tion, especially in the presence of inter-component call-backs [7]. Finally, we
want to show that the Lagoona approach to component-oriented programming
is scalable, which will require implementing a suitably large, non-trivial soft-
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ware system from scratch, and maintaining it through a series of extensions and
adaptions.
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