
European Journal of Operational Research 172 (2006) 814–837

www.elsevier.com/locate/ejor
Discrete Optimization

A genetic algorithm for the two-dimensional strip
packing problem with rectangular pieces

Andreas Bortfeldt *

Department of Information Systems, University of Hagen, Hagen, Germany

Received 31 October 2003; accepted 25 November 2004
Available online 22 January 2005
Abstract

Given a set of rectangular pieces and a container of fixed width and variable length, the two-dimensional strip pack-
ing problem (2D-SPP) consists of orthogonally placing all the pieces within the container, without overlapping, such
that the overall length of the layout is minimised. Until now mainly heuristics, for example genetic algorithms (GA),
were proposed for the 2D-SPP which use encoded solutions that are manipulated by standard operators. In this paper
a GA for the 2D-SPP is suggested that works without any encoding of solutions. Rather fully defined layouts are
manipulated as such by means of specific genetic operators. Two additional constraints, namely the orientation con-
straint and the guillotine constraint, can be taken into account. The GA is subjected to a comprehensive test using
benchmark instances with up to 5000 pieces. Compared to eleven competing methods from the literature the GA per-
forms best.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Packing; Two-dimensional strip packing problem; Rectangular pieces; Genetic algorithm
1. Introduction

The subject of this paper is the two-dimensional
strip packing problem with a set of rectangularly
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.11.016

* Address: FernUniversität Hagen, Lehrstuhl Wirtschaftsin-
formatik, Profilstrasse 8, 58084 Hagen, Germany. Tel.: +49
2331 9874431.

E-mail address: andreas.bortfeldt@fernuni-hagen.de (A.
Bortfeldt).
shaped pieces and a larger rectangle with a fixed
width and variable length, designated as the con-
tainer. The search is for a feasible layout of all
the pieces in the container that minimises the re-
quired container length and, where necessary,
takes additional constraints into account.

A layout is considered feasible if pieces do not
overlap, all pieces lie within the container and
are arranged orthogonally, i.e. parallel to the con-
tainer edges. Additionally, two constraints are
optionally included in the problem:
ed.

mailto:andreas.bortfeldt@fernuni-hagen.de

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 815
(C1) Orientation constraint
While rotating the pieces by 90� is permitted in

general, the orientation of all pieces is fixed by the
orientation constraint.
(C2) Guillotine constraint

This constraint requires that all pieces placed in
a layout can be reproduced by a series of guillotine
cuts, i.e. edge-to-edge cuts parallel to the edges of
the container.

The strip packing problem (SPP) can be consid-
ered both in two (2D-SPP) and in three dimensions.
Together with the container loading problem and
the bin packing problem, the SPP represents a
further basic type of more-dimensional packing
and cutting problems (cf. Coffman and Shor, 1990;
Martello et al., 1998) with considerable practical
relevance. The 2D-SPP occurs, e.g., in the cutting
of rolls of paper or metal. In the three-dimensional
case the solution of strip packing problems can
improve the design of containers or even help the
selection of vehicles in a vehicle fleet for transport-
ing a given volume of goods (cf. Sixt, 1996).

Taking into account the constraints (C1) and
(C2) the following four subtypes of the strip pack-
ing problem can be distinguished (cf. Lodi et al.,
1999):

• RF: the pieces may be rotated by 90� (R) and no
guillotine cutting is required (F);

• RG: the pieces may be rotated by 90� (R) and
guillotine cutting is required (G);

• OF: the orientation of the pieces is fixed (O) and
no guillotine cutting is required (F);

• OG: the orientation of the pieces is fixed (O)
and guillotine cutting is required (G).

Obviously, a feasible solution with regard to the
subtype OG is also feasible in terms of the three
other subtypes of the SPP and a feasible solution
with regard to the subtypes RG and OF, respec-
tively, is also feasible in terms of the subtype RF.

The SPP is NP-hard (cf. Hopper and Turton,
2001). Only few exact approaches for the 2D-
SPP are known so far and their applicability is lim-
ited to piece sets with up to 200 pieces. Martello
et al. (2003), e.g., propose a branch-and-bound
method for the 2D-SPP while Fekete and Schepers
(1997) develop a general framework for the exact
solution of more-dimensional packing problems.

In the literature heuristics have been deemed
most suitable for solving the 2D-SPP. These are,
to an increasing degree metaheuristics, mainly ge-
netic algorithms (GA), but simulated annealing
(SA), tabu search (TS) and other types of meta-
heuristics are also applied. Hopper and Turton
(2000, 2001) provide an extensive up-to-date over-
view of the metaheuristics that have been devel-
oped for the different variants of the 2D-SPP. To
this end, Hopper and Turton differentiate between
the following three groups of metaheuristic solu-
tion approaches:

(1) The methods of the first group use a coding of
solutions. Typically, an encoded solution stip-
ulates a placement sequence for the pieces. The
search is carried out by the respective meta-
heuristic in the space of the encoded solutions
and usually uses problem-independent opera-
tors. A placement or decoding routine serves
to transform encoded solutions into complete
layouts. An example of a placement routine
is given by the so-called bottom-left (BL) heu-
ristic. If a horizontally placed container is
assumed, the bottom-left routine displaces
each piece to be placed in the container alter-
nately in two horizontal, orthogonal direc-
tions, until displacement is no longer possible
(cf. Hopper and Turton, 2000).

(2) Solution approaches for the second group
have an intermediate position. While on the
one hand encoded solutions already contain,
to a certain extent, layout or geometrical
information, an additional placement routine
is also required for the final positioning. Typ-
ical for this group is a problem-specific cod-
ing, which is often based on graphs, and
corresponding problem-specific operators.

(3) The approaches in group 3 do not use cod-
ing. The search takes place directly in the
space of the fully defined layouts, which are
therefore manipulated as such by specific
operators.

In Table 1 a representative sample of recently
developed metaheuristics for the 2D-SPP with

Table 1
Metaheuristics for the 2D-SPP with rectangular pieces

No. Authors, source SPP
subtype

Group of
approaches

Type of
metaheuristic

Additional remarks

1 Jakobs (1996) RF 1 GA • Uses the BL heuristic as decoder

2 Dagli and Poshyanonda (1997) and
Poshyanonda and Dagli (2004)

RF 1 GA • Placement routine is based on a sliding
method and makes use of an artificial
neural network

3 Liu and Teng (1999) RF 1 GA • Uses an improved BL heuristic that
gives priority to width-orthogonal
shifting of a piece

4 Hopper and Turton (2000) RF 1 GA • No. 4–6 are the most successful
methods proposed in Hopper and
Turton (2000)

5 Hopper and Turton (2000) RF 1 SA • Each of these methods uses the bottom
left fill (BLF) heuristic that is capable
of filling gaps in a layout

6 Hopper and Turton (2000) RF 1 NE • NE stands for naive evolution,
i.e. a GA with mutation but without
crossover

7 Mumford-Valenzuela et al. (2003) RG 1 GA • Based on a normalised postfix
representation that offers a unique
encoding for each feasible layout

• Uses standard operators such as
cycle crossover

8 Kröger (1993, 1995) RG 2 Parallel GA • A solution is encoded as a directed
binary tree that fixes one dimension
of the position of each piece

• The second dimension is fixed by the
placement routine

9 Schnecke (1996) RG 2 Parallel GA • Similar to no. 8

10 Ratanapan and Dagli (1997, 1998) RF 3 GA • Specific genetic operators conduct
geometrical operations such as
translation and rotation of pieces

11 Iori et al. (2002) and Monaci (2001) OF Hybrid Hybrid, combines
GA and TS

• GA: solutions are encoded as
placement sequences

• TS: derived from the TS method by
Lodi et al. (1999) for the 2D bin
packing problem

• Additional procedures for generating
initial solutions or for post-optimising
solutions look at layouts directly

816 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
rectangular pieces is overviewed. Each of the
metaheuristics is characterised by the covered
SPP subtype, the respective group of solution ap-
proaches (as introduced above), the type of the
metaheuristic and some additional remarks. For
further information the reader is referred to the
literature.

A genetic algorithm for the 2D-SPP that covers
each of the SPP subtypes will be presented below.
It is obtained by adapting the GA from Bortfeldt

layer 1 layer 2 container
length lC

x

y

container
width wC

layer
determining
piece ldp

0

layer depth

Fig. 1. Layer structure of a layout.

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 817
and Gehring (2001), which was developed for the
3D container loading problem (CLP) with a single
container to be loaded.

The GA for the 2D-SPP represents a solution
approach of group 3, which has been seldom used
so far. A simpler version of the GA was presented
in Bortfeldt and Gehring (1999). From a method-
ological point of view, it is the intention of this pa-
per to demonstrate that a genetic search without
any encoding of solutions is suitable to tackle the
2D strip packing problem.

The remainder of the paper is organised as fol-
lows: Section 2 provides a description of the origi-
nal GA for the container loading problem. Section
3 shows the adaptation of the GA to the 2D-SPP;
Section 4 subjects the GA for the 2D-SPP to a
benchmark test and Section 5 contains a sum-
ming-up of the paper.
2. The genetic algorithm for the container loading
problem

In the following the GA from Bortfeldt and
Gehring (2001) for solving the container loading
problem (in short CLP-GA) is described. The
reader is referred, e.g., to Falkenauer (1998) for
an introduction into genetic algorithms. In accor-
dance with the subject of the paper at hand a 2D
container loading problem is assumed. It can be
formulated as follows: for a set of rectangular
pieces and a rectangular container with fixed
dimensions determine a layout including a subset
of the pieces such that the selected pieces are
orthogonally placed within the container, without
overlapping, and the covered area of the container
is maximised.

2.1. Geometrical structure of layouts

The GA exclusively generates layouts with a
layer structure. Each layout consists of successive
rectangular layers in which one or more pieces
are arranged. Each piece belongs to exactly one
layer. The width of a layer corresponds to the con-
tainer width. The layer depth is stipulated by a
so-called layer-determining piece (ldp) and its ori-
entation. The structure of layouts is illustrated in
Fig. 1; this also shows the embedding of the con-
tainer in the 2D coordinate system used here.

2.2. Representing layouts and determining their

fitness

The genetic search is carried out directly in the
space of the completely defined layouts with a
layer structure. The representation of layouts, i.e.
the data structure for solutions of the GA, is de-
fined and illustrated by an example in Fig. 2.

Some elements of the representation need a fur-
ther clarification:

• The type of a piece is given by its dimensions,
i.e. the pieces of a type represent congruent
rectangles. The piece types are numbered in
descending order according to the piece area.
Subsequently, it sometimes will not explic-
itly be differentiated between pieces and their
types.

• The orientation of a piece p in a layout is given
by an orientation variant ov(p); ov(p) is equal to
0 if the shorter edge of p lies in parallel to the
container width and equal to 1 otherwise.

• The reference corner of a piece p in a layout des-
ignates the corner of p that is nearest to the ori-
gin of the 2D coordinate system.

• The type t(p) of a piece p, its orientation variant
ov(p) and the respective coordinates x(p), y(p) of
the reference corner represent a so-called plac-
ing within a layer.

• The filling rate of a layer is calculated as
the quotient of the total area of all pieces

general data general data
nl – no. of layers
ca – covered area, i.e. total area of all

placed pieces

nl = 3
ca = 160

layer records, for each layer l = 1, 2, …, nl layer records
l = 1:
d = 8, fr = 0.9, np = 1

d(l) – depth, i.e. x-dimension of layer l
fr(l) – filling rate of l
np(l) – no. of pieces in l placings

p t ov x y placings, for each piece
p = 1, 2, …, np(l) in layer l 1 1 1 0 0

l = 2:
d = 8, fr = 0.8, np = 3

p t ov x y

t(p) – type of piece p
ov(p) – orientation variant of p
x(p), y(p) – coordinates of the refe-

rence corner (rc) of p 1 2 0 8 0
2 3 1 8 5
3 3 1 11 5

l = 3:
d = 4, fr = 0.6, np = 2

p t ov x y
1 3 0 16 0
2 3 1 16 3

(3)
(3)

(3)

(3)

(2)

(1) (type of piece)

0

x

y

l = 2

l = 1

l = 3

8

16

11

rc

3 5 9
width =
10

length =
20

(a) data structure (b) example layout (c) respective solution

Fig. 2. Representation of layouts.

818 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
placed in the layer and the layer area. The
substructure of all layer data is called a layer
record.

• The layers of a solution are always arranged in
descending order according to the filling rate,
i.e. the layer next to the origin of the coordinate
system has the highest filling rate. After a solu-
tion has been constructed its layers are rear-
ranged and the x-coordinates of the placings
are adapted if necessary.

• The objective function value of a solution, i.e.
the covered part of the container area, serves
as the fitness of the solution.

Obviously, a solution completely determines the
corresponding layout. Thus, a decoding of solu-
tions is not necessary.

2.3. Setting-up the genetic search

The overall procedure of the CLP-GA is shown
in Fig. 3.

Some essential characteristics of the GA should
be stressed:

• The GA uses the reproduction model of gener-
ation-wise replacement and the size of the pop-
ulation, given by a parameter npop, is held
constant during the search. No duplicates are
permitted within the start generation or in the
subsequent generations. The search is aborted
immediately after a solution was found that
includes all pieces (indicating an optimal
solution).

• In order to create a new generation initially the
nrep (nrep P 1) best solutions of the former gen-
eration are reproduced (elitist strategy). After
this, the new generation is filled up to the full size
npop by generating solutions through crossover
and the first mutation variant, called standard
mutation. Both operators are used alternatively
with the constant and complementary proba-
bilities pcross and pmut (pcross + pmut = 1).
Finally, nmerge additional solutions are gener-
ated through the second mutation variant,
called merger mutation. These solutions replace,
where necessary, poorer solutions from the new
generation.

• Parent solutions for the crossover and both
mutation variants are chosen by means of a
ranking selection. However, the second cross-
over partner is selected purely at random.

The problem-specific operators, namely the
crossover and both mutation variants, proceed in
two steps:

procedure cl_genetic_search(in: container length lC, container width wC, piece set P, out: best solution sbest)
set generation counter g := 0;
generate npop solutions for the start generation g;
for g := 1 to ngen do

reproduce the best nrep solutions from generation g – 1 for generation g;
while generation g contains fewer than npop solutions do

if randomly chosen operator is crossover then
select parent solutions ps1, ps2 in generation g – 1;
generate offspring os by crossover for generation g;

else {randomly chosen operator is mutation}
select parent solution ps in generation g – 1;
generate offspring os by standard mutation for generation g;

endif;
endwhile;
for i := 1 to nmerge do

select parent solution ps in generation g – 1;
generate offspring os by merger mutation;
if os is better than the worst solution ws in generation g then

replace ws by os;
endif;

endfor;
endfor;
end.

Fig. 3. Overall procedure of the GA for the CLP.

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 819
• At first the offspring is initialised to empty (0
layers) and some of the best layers in terms of
the filling rates of the parent solution(s) are
transferred unchanged to the offspring.

• After the layer transfer, the offspring can usu-
ally still be extended by further layers. Hence,
in the second step the offspring is completed
by newly generated layers.

The details of the layer transfer depend on the
operator:

• If a crossover is carried out all the layers of both
parents are examined in descending order
l1

l2

l3

container length: 200
available pieces:

type
no. of pieces

1
2

2
3

3
5

parent layer

ps1
ps2

l1
l1

ps2
ps1

l2
l2

ps1 l3

transferable

yes
no, remaining length too small and
not enough pieces of type 1 available

yes
no, not enough pieces of type 2 availab
no, as before

filling rate

0.95
0.90

0.85
0.80
0.75

Fig. 4. Layer transfer w
according to the filling rate. The best parent
layer is always transferred. A second, third
etc. parent layer is only transferred if its depth
does not exceed the residual container length
and if the total number of existing pieces per
type is respected. Fig. 4 gives an example for
the layer transfer in the course of a crossover
operation. Only those data of the parents are
indicated which control the transfer. Neverthe-
less, complete layer records are transferred to
the offspring.

• In the course of a standard mutation a number
nlt of layers to be transferred is selected purely
at random; at maximum 50% of the parent
parent ps1, nl = 3 parent ps2, nl = 2

d = 120, fr = 0.90
types of pieces: 1, 1, 2, 3, 3

layer l1 from ps1

offspring
after layer transfer

l1

l2

d = 90, fr = 0.95
types of pieces: 1, 2, 3

le

d = 60, fr = 0.85
types of pieces: 2, 2, 3

d = 40, fr = 0.75
types of pieces: 2, 3

d = 60, fr = 0.80
types of pieces: 2, 3, 3

layer l2 from ps2

ithin a crossover.

820 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
layers may be transferred. The best nlt layers of
the parent are then transferred to the offspring.

• A merger mutation transfers all but two ran-
domly selected layers of the parent to the
offspring.

An offspring is completed by means of the pro-
cedure complete_solution that is described after-
wards. This procedure also serves to create the
start generation.

2.4. Completing a solution

A single new layer is generated in two steps:

• Initially a feasible layer variant consisting of a
layer-determining piece ldp and an orientation
variant ov is chosen. A layer variant is only fea-
sible if the piece ldp is still free (not yet placed)
and it can still be placed within the container in
the orientation ov. In general the depth d of the
layer is given by the dimension of ldp which
runs parallel to the container length. But for
the lastly generated layer of a solution the depth
d is determined by the residual container length.

• In the second step the layer is filled by means of
the procedure fill_layer explained below.

The procedure complete_solution generates a set
of complete, i.e. no longer extendable, solutions
S_out from one incomplete solution s_in. It can
be outlined as follows:

• At first a set Lv1 of feasible layer variants for
the first new layer of s_in is determined. For
Table 2
Use cases of the procedure complete_solution

Characteristic Use case: Generation of the
start population

Ge
thr

No. of layers in s_in 0 layers P1
No. of desired complete

solutions ns

Population size npop 1, i

Restriction on permitted
variants with first layer (Lv1)

None On
var

Restriction on permitted
variants with subsequent
layers (Lvn)

Only first variant permitted On
var
each variant in Lv1 a layer is generated and
s_in is extended alternatively by each of these
layers. This results in a set S1 of temporary
solutions.

• Each of the temporary solutions s 2 S1 is then
extended separately by additional layers. If no
further layer can be added, s is inserted in the
set S_out that is originally empty.

• Each time an additional layer for a solution s is
to be created, a set Lvn of feasible layer variants
with regard to the present state of s is deter-
mined. For each variant in Lvn a layer is gener-
ated experimentally and the layer with the
highest filling rate is then added to s.

• Let be ns the desired number of complete solu-
tions (cf. Table 2). At last the set S_out is
reduced to the ns best solutions in terms of
the covered area.

On the one hand the procedure is used to com-
plete an offspring of a crossover and a mutation,
respectively; on the other hand it serves to create
the start generation. Hence, three use cases exist
which are defined in Table 2.

The restrictions on the permitted layer variants
are based on a descending sorting of all feasible
layer variants in accordance with the ldp area.
For example: the first new layer for a crossover off-
spring is to be generated, 20 feasible layer variants
exist and qldp1 is set to 50%. Then only the first 10
layer variants with largest ldp area are permitted,
i.e. considered for Lv1.

The parameters qldp1 and qldp2 serve the con-
trol of the trade-off between the solution quality
and the effort for a crossover operation while qldp3
neration of an offspring
ough crossover

Generation of an offspring through
mutation (both variants)

layer P1 layer
.e. only best solution 1, i.e. only best solution

ly the first qldp1% of all
iants is permitted

Only one variant is permitted which
is selected randomly among the
first qldp3% of all variants

ly the first qldp2% of all
iants is permitted

As with first new layer

x

y

residual space

daughter space
beside p

piece p
daughter
space
in front of p

piece p

daughter space
beside p

daughter
space
in front of p

Fig. 5. Variants of the generation of daughter residual spaces.

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 821
merely defines a selection range for layer variants
that is used for mutations.

In a merger mutation only one layer is newly
generated that replaces two selected parent layers
(see above). In this way a merger mutation aims
at reducing losses at the border between two
layers.

2.5. Filling a layer

In order to fill a layer the responsible procedure
fill_layer generates a set of placings. A residual
space represents a free rectangular space within
the layer. It is characterised by its side dimensions
and its reference corner, i.e. the corner closest to
the origin of the coordinate system. Each placing
is established by arranging a piece with fixed orien-
tation in the reference corner of a residual space.
After a piece has been placed in a residual space,
two daughter residual spaces (in short daughter
spaces) are generated within it, which lie beside
and in front of the piece. The two possible variants
Fig. 6. Procedur
of the generation of daughter residual spaces are
illustrated in Fig. 5.

The procedure fill_layer is shown in Fig. 6. In
the following some details are highlighted:

• The procedure takes as input the layer-deter-
mining data (ldp, ov, d) and the set Pfree of still
available pieces that is updated each time a
piece has been placed. The placings are collected
in a layer record L which is returned at last.
e fill_layer.

822 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
• The layer rectangle acts as the first residual
space. It is filled by the layer defining piece in
the prescribed orientation (first placing) and
then inserted into the stack SStack for residual
spaces.

• Each time the following loop is passed through,
the uppermost residual space of SStack is
removed and processed (as scurr). Filling a layer
terminates when the stack SStack is empty.

• If the current residual space scurr already
includes a placing only the daughter spaces
are generated and inserted as empty spaces in
SStack. Moreover, the placing is accepted for
the layer record. This situation occurs for the
first residual space as well as for daughter
spaces which are filled just after their generation
(see below).

• If scurr is still empty and not loadable it is dis-
regarded. Otherwise the pair of pieces with the
maximum total area that can be placed com-
pletely in scurr is determined. A single piece
(degenerated pair) is also admissible.

• If only one piece was found it is placed in scurr

and the placing is taken over in the layer record.
The daughter spaces are generated and inserted
as empty spaces into SStack.

• If two pieces were found one piece (pc) is placed
in the reference corner of scurr and this placing
is again accepted for the layer record. The other
piece (ps) is positioned in front of or besides pc.
The generation of daughter spaces has to ensure
Table 3
Layer parameters

Parameter Value Explanation

rscut Mode for generating daughter resid
0 Daughter spaces are generated such
1 Daughter spaces are generated such

ovmode Mode for determining the orientatio
0 Orientation variants are determined

of the larger piece is as small as pos
is also as small as possible

1 Orientation variants are determined
large as possible

rsmerge Mode for residual space merging
0 Without residual space merging
1 With residual space merging
that ps lies completely in (the reference corner
of) one of these spaces. The placement of ps is
recorded for the respective daughter space.
Thus, this daughter space already includes a
placement when it enters the stack SStack.

The procedure offers some other features such
as the merger of residual spaces that is aimed at
larger and often better loadable residual spaces.
A daughter space that has just been generated is
merged where possible with a residual space that
is already in the stack. Two residual spaces are
only merged if a placing has not been reserved
for either of them and the two residual spaces to-
gether form a rectangle. The merger of residual
spaces as well as two other features of the
procedure is parameterised by means of the so-
called layer parameters which are explained in
Table 3.

It can be stated that the GA will always gener-
ate layouts that satisfy the guillotine constraint.
This is ensured on the one hand by the layer struc-
ture of layouts. On the other hand, each residual
space within a layer, starting with the layer rectan-
gle, is completely divided into two parts along a
residual space dimension (i.e. parallel to a con-
tainer dimension). A piece situated in the residual
space is always placed completely on one or other
of the two parts. The orientation constraint is met
if necessary by avoiding non-permitted orientation
variants of the pieces.
ual spaces
that the area of the larger daughter space is maximised
that the area of the smaller daughter space is maximised

n variants for the piece pair in a residual space
such that the x-dimension (in the direction of the layer depth)
sible and (in case of tie) the x-dimension of the smaller piece

such that the sum of the x-dimensions of both pieces is as

Fig. 7. Procedure sp_search.

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 823
2.6. Learning the layer parameters

Experiments with the different possible settings
for the three layer parameters showed that none
of the eight possible value combinations, when
fixed, dominates the other seven combinations to
a sufficient extent. In addition changing the value
combinations during the search often proves
advantageous. To cope with this situation a learn-
ing concept is tested for the layer parameters,
which is arranged as follows:

• The values for the parameters rscut, ovmode
and rsmerge are re-determined before the gener-
ation of each layer. The selection of the para-
meter values in each case is done randomly
in accordance with a dynamic probability distri-
bution for the eight possible value com-
binations.

• To generate the start generation a pre-defined
start distribution is selected, which will be dis-
cussed later. The probability distribution is
updated on each transition to a successor
generation.

• The procedure is as follows: for each value com-
bination i, a success frequency succ_frequ(i),
i = 1, . . . , 8, is introduced and is initialised at
the start of the search with zero. If a solution
is taken into a new generation, succ_frequ(i) is
increased by the value j, if j layers of the
solution were generated in accordance with
the value combination i. Caused by the mer-
ger mutation solutions may be removed from
the new generation that have already been
accepted. In this case the affected success
frequencies have to be corrected downwards
correspondingly. The relative success frequen-
cies after n generations (n = 1, 2, . . .) finally
define the probability distribution of the
value combinations used for the (n + 1)th
generation.

The dynamisation of the distribution is aimed
at the preferred selection of the most successful
value combinations in the previous course of the
search, where it is assumed that these will continue
to be particularly successful in the future.
3. Adaptation of the genetic algorithm to the strip

packing problem

In the following the adaptation of the CLP-GA
to the strip packing problem is explained. Further-
more additional modifications will be discussed
that serve to improve the solution quality. Finally,
the GA for the 2D-SPP has to be configured.

3.1. Taking account of the variable container

length

The solution of the strip packing problem is led
back to the calculation of multiple instances of the
container loading problem with reducing container
lengths. To this end, the CLP-GA is embedded
into a control procedure that is shown in Fig. 7.
The control procedure is as follows:

• Initially a start solution sstart for the given SPP
instance is constructed by means of the heuristic
BFDH* which is explained later. The best
solution sbest is set to sstart and the minimal
container length lCbest is initialised accord-
ingly. The operator lU(s) provides the length
(x-dimension) used by a (complete or partial)
solution s.

824 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
• The further proceeding depends on the instance
size. If the number of pieces jPj exceeds the
limit nplarge only a subset P 0 � P is used to cal-
culate further solutions. In order to determine
P 0 the layers of sstart are examined in ascending
order according to the filling rate. For each
layer the set P 0 is extended by all pieces placed
in the layer. This process stops if the number
of pieces in P 0 exceeds the limit npsmall. The
remaining layers of sstart with the highest fill-
ing rates are maintained in the partial solu-
tion skept. Suitable values for the parameters
nplarge and npsmall will be indicated later (cf.
Table 4).
Table 4
Standard configuration of the GA for the 2D-SPP

Parameter settings for the integrated CLP-GA

• Population size npop = 50
• No. of solutions to be reproduced per generation nrep = 10
• Use probabilities: crossover—pcross = 0.67, standard mutation—
• No. of merger mutations per generation nmerge = 10
• Percentages qldpi, i = 1,2,3, (cf. Table 2) depend on the no. of pie

nptypes lies in [1, 49] [41, 60] [61, 200]

qldp1 100 66 10
qldp2 100 66 10
qldp3 33 33 33

• No. of calculated (subsequent) generations per CLP instance ngen

np lies in [1, 60] [61, 100] >100

ngen 1000 500 100

Additional parameter settings

• No. of runs per SPP instance nruns = 2
• Start distributions for the probabilities of the value combinations

Value combination 1 2 3

rscut 0 0 0
ovmode 0 0 1
rsmerge 0 1 0

Probability
1. run 0.5 0.5 0
2. run 0.2 0.2 0.2

• nplarge = 199, i.e. an instance is reduced for the CLP-GA if it cont
reduced instance must exceed 100 (cf. Fig. 7)
• If the number of pieces jPj does not exceed
nplarge the set P 0 is set to P and skept is set to
empty.

• Now the current container length lC is initia-
lised as the difference lCbest � 1 � lU(skept);
of course lU (skept) is equal to zero if skept is
empty.

• Each time the following (lC-)loop is passed
through, another 2D-CLP instance with the
container dimensions lC, wC and the piece set
P 0 is solved by means of the CLP-GA.

• Granted that the returned solution s 0 includes
all pieces in P 0. Then the union of the new (par-
tial) solution s 0 and the kept partial solution
pmut = 0.33

ce types nptypes of the given CLP instance as follows:

>200

5
5
33

depends on the no. of pieces np of the given instance as follows:

of the layer parameters (cf. Table 3):

4 5 6 7 8

0 1 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 0 0
0.2 0.05 0.05 0.05 0.05

ains at least 200 items; npsmall = 100, i.e. the no. of items in an

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 825
skept represents another solution to the SPP
instance. Its total length amounts to lU(s 0) +
lU(skept) where lU(s 0) 6 lC. The container
length lC is reduced at least by one unit before
the next cycle begins. The initialisation and the
updates of lC ensure that each new solution to
the SPP instance is the best solution found so
far.

• The search terminates the first time no solution
s 0 including all pieces in P 0 was found. More-
over the search is aborted if the length lCbest

reaches the well-known continuous lower
bound clb that is calculated as

clb ¼
X
p2P

areaðpÞ
 !

=wC

& ’
; ð1Þ

dze stands for the smallest integer not smaller
than z. The best solution sbest and the respec-
tive length lCbest are returned in either case.

The adaptation approach is supported by the
circumstance that the CLP-GA terminates for
any CLP instance just after a solution containing
all delivered pieces was found. It turns out that
new and better solutions to an SPP instance can
be computed with low effort so long as the used
container length is relatively far from the best pos-
sible value. Thus, the major part of the overall
search effort accounts for a relatively small num-
ber of CLP instances.

For larger instances the heuristic BFDH* yields
solutions of relatively high quality. Consequently,
the start solution will already include a subset of
layers with sufficiently high filling rates. Therefore,
the further search can be focussed on the improve-
ment of the poorer layers of the start solution.
Through this the overall search effort may be con-
siderably reduced.

3.2. Constructing the start solution

The heuristic BFDH* is derived from (the best
variant of) the Best Fit Decreasing Height
(BFDH) heuristic that was proposed by Mum-
ford-Valenzuela et al. (2003). Subsequently the
BFDH heuristic is described as a layer building
method. Afterwards the modifications of the
BFDH heuristic are introduced. As usual in the
2D-SPP literature, the dimensions of the container
and of the pieces, respectively, are referred to as
‘‘width’’ and ‘‘height’’ (instead of ‘‘length’’) in this
section.

The BFDH heuristic works as follows:

• At first the pieces are oriented in such a way
that the width is greater than or equal to the
height for each rectangle. After this the pieces
are pre-sequenced by non-increasing height.

• Now the pieces are processed one after another.
Each piece is packed into a rectangular layer, at
the layer bottom and left justified. The width of
a layer is given by the container width while the
height of a layer is determined by the height of
the first piece that is packed into the layer.

• If at least one (existing) layer can accommodate
the current piece the layer with least remaining
free (unoccupied) width is chosen in which the
piece fits. Otherwise a new layer is opened
above the existing layers and the current piece
is stowed in the new layer as the first piece.

Two modifications of the BFDH heuristic are
suggested here. The first modification deals with
the selection of an existing layer for the current
piece. As before the layer with minimal remaining
free width is searched for that can accommo-
date the piece. But during this search the orienta-
tion of the piece is no longer fixed: For each
layer both orientation variants of the piece are
experimentally used. Thus, a successful search re-
sults in an existing layer and an orientation of
the piece. Of course the current piece is then
packed into the layer in the found orientation. If
the search was not successful the piece is stowed
into a new layer in the prescribed orientation
‘‘width P height’’.

The second modification tries to utilise the
remaining free space within layers above the pieces
at the layer bottom. The modification is realised by
means of an extra routine. Each time a piece has
been packed into a layer it is examined whether
the remaining free width of the layer became too
small to accommodate a further piece at the bot-
tom. If this is the case the routine is once applied
to the layer. The routine is as follows:

free space 1: free space 2: free space 3:

0 wCpiece at the bottom

Fig. 8. Set-up of free spaces within a layer.

826 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
• First the pieces in the layer are sequenced (from
the left to the right) by non-increasing height.
Although this sequence is guaranteed by the ori-
ginal BFDH heuristic it is possibly disturbed by
the first modification.

• Now several rectangular free spaces are gener-
ated within the layer as shown in Fig. 8. The
free spaces are processed from the left to the
right.

• For each free space the piece with the largest
area is determined that fits into the space in
any orientation. If a piece and an appropriate
orientation were found the piece is fixed in the
bottom-left corner of the free space. While the
search for a fitting piece is successful it is
repeated. After a piece was packed the free
space is updated by shifting its left edge to the
right edge of the packed piece. Thus the loading
of a free space may result in several pieces which
lie side by side within the free space.

• At last the layer arrangement is returned and
the set of free pieces is updated where necessary.
Consequently, those pieces which are packed by
means of the routine are no more available for a
packing at the bottom of a layer.

Obviously, the BFDH* heuristic satisfies the
guillotine constraint. If the orientation constraint
is to be met all steps are omitted or modified in a
self-evident way in which pieces are rotated.

3.3. Diversifying the search

As explained above a learning process of the
layer parameters (cf. Table 3) takes place within
the CLP-GA. Whenever a CLP instance is solved
these parameters are learned from scratch, i.e. they
are selected first in accordance with a given start
distribution.
Several suitable start distributions are defined
using the relative strength of the individual param-
eters values. Because, for example, the setting
rscut = 0 (cf. Table 3) usually achieves better re-
sults than the complementary value, the start
distributions have correspondingly higher proba-
bilities for the four value combinations where
rscut = 0. Two start distributions are shown
explicitly in Table 4.

Because different favourable start distributions
exist, it appears reasonable to diversify the search
for a solution of an SPP instance. The following
diversification approach divides the search into
several runs:

• With each run the complete search process is
repeated for the SPP instance. For each CLP
instance to be solved within a single run the
same start distribution is used. But this distribu-
tion is changed on the transition to the next run.

• The procedure sp_search is called once for each
run (cf. Fig. 7). However, from the second run
onwards the best SPP solution found so far acts
the role of the start solution which of course is
not calculated again by the BFDH* heuristic.
Thus the initial value of lC within a run is set
taking account of the minimum used container
length achieved in previous runs.

• The best SPP solution of all runs is updated
after the end of each run where necessary and
this solution is entered as the process solution
at last.
3.4. Post-optimising the best solution of a run

The required layer structure of layouts prohibits
pieces from penetrating layer borders. Thus, space
may remain free on both sides of a layer which
could actually be filled. The implied disadvantage

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 827
of the layer approach can be tempered by an addi-
tional elementary heuristic for the post-optimisa-
tion of layouts. The idea of the heuristic consists
of moving defined pieces in a layer into an adjacent
layer and to use previously free space on the broad
side of the adjacent layer for this purpose. This
procedure is repeated for several layers. Where
the procedure is successful, the used container
length will be reduced by one or more units, in
other words an improved solution of the strip
packing problem is achieved.

The heuristic takes one layout as input and is
divided into three phases, which are explained
below:

• In the analysis phase the block structure is deter-
mined for each layer in addition to the layer
structure of the layout (cf. Fig. 9a). Each layer
is, in general, broken down into several rectan-
gular blocks that follow one another along the
broad side of the container (y-direction). One
or more pieces are completely arranged in each
block. The depth of a block results from the
maximum sum of the depths (x-dimensions) of
pieces in the block placed next to one another
in the lengthways direction; the width of a block
is defined analogously. The blocks in a layer are
divided into critical and non-critical blocks. The
depth (x-dimension) of the critical blocks is
equal to the layer depth.

• The task of the reorganisation phase is to create
a rectangular free space, called M space, at one
x

y

block depth

(a) block structure of a layer (

block 1
(critical)

block 2
(non critical)

block 3
(critical)

block 4
(non critical)

block depth

1

2 3

4 6

87

5

Fig. 9. Block structure and re
of the broad sides of every single layer, which
can then be used for displacing pieces from
other layers (cf. Fig. 9b). The width dimension
(y-dimension) of this space, which is designated
the free width, should be as large as possible;
the depth dimension must be at least one length
unit. The free width of a layer is maximised
mainly through a reorganisation of its blocks.
These are rearranged (with the pieces they con-
tain) in such a way that first the critical and then
the non-critical blocks follow one another
without any gaps. In addition, single pieces at
the relevant broad side of the layer are displaced
parallel to the layer width or stored elsewhere in
previously free space on the inside of the layer.
In addition, individual blocks are reflected at
their centre line parallel to the x-axis.

• In the displacement phase a limited number of
the layers with the maximum free widths are ini-
tially selected. The selected layers are subjected
experimentally to a displacement process in
every possible permutation or sequence in the
container. The best layout with the shortest
length over all permutations obtained by the
displacement process is then completed by the
remaining layers, which retain their original
layer depths. This layout is returned as the solu-
tion for the heuristic.

• The displacement process for a given sequence of
the selected layers is demonstrated in Figs. 10
and 11. Fig. 10 shows the selected layers with
b) same layer after reorganisation
x

y

M space

free
width

87

4 6

5

1

2 3

organisation of a layer.

B21

B23

B22

x

y

B13

B12

B11

B33

layer 1 layer 2 layer 3

M space

B32

B31

Fig. 10. Three layers with blocks Bij (i, j = 1, 2, 3) after the
reorganisation phase.

828 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
their blocks after the reorganisation phase,
where the M spaces are in an analogue situation
(top right).

• Starting with the second layer of a permutation,
in each case a subset of the critical blocks in the
layer i (i > 1) is determined in such a way that
the sum of the block widths is the maximum
of, but does not exceed, the free width of the
layer i � 1. The blocks in layer i are now rear-
ranged so that the selected critical blocks can
be displaced by being pushed to the left into
the M space of layer i � 1. Following this the
(maximum) displacement is carried out. Fig.
11a shows the displacement process for the sec-
ond layer. Before block B22 can be pushed to
the left, it has to be exchanged for block B23.
After the displacement the M space of layer i

is redefined taking account of the layer�s old
B23

B22 B33

B32

B31

x

y

B13

B12

B11

B21

(a) Layers after displacement of the second layer. (

Fig. 11. Results of the di
M space and the displacement. Because of the
displacement, the width of the M space, i.e.
the free width of layer i, always increases.

• Fig. 11b shows the displacement process for the
third layer. After block B33 has changed places
with the critical blocks B31 and B32, the latter
can be pushed into the M space of the second
layer. The width of the third layer is now equal
to the container width. Its depth therefore indi-
cates the achieved reduction of the container
length that was used for the given permutation.

The heuristic generates solutions that, in gen-
eral, no longer satisfy the guillotine constraint
and it is therefore only applicable if this constraint
is not present. This can be seen in Fig. 11b, where,
for example, the pieces in block B11 cannot be
reproduced through guillotine cuts.

The post-optimising heuristic is incorporated
into the method in the following way. At the end
of each run (i.e. after the lC-loop was left, cf.
Fig. 7) the heuristic is started and fed by the best
solution found in the run. If the heuristic is able
to improve this solution the best solution of the
run (and the respective container length) is
updated.

3.5. Configurating the genetic algorithm for the

SPP

A standard configuration of the GA for the SPP
was determined empirically. It contains all neces-
sary parameter settings and is listed in Table 4
(see above). The standard configuration is used
B33

B31

B32

B21

B23

B22

x

y

B13

B12

B11

b) Layers after displacement of the third layer.

splacement process.

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 829
throughout the numerical test described below.
The variation of the values for the parameters qldpi

(i = 1, 2) and ngen serves to control the trade off
between solution quality and effort. The termina-
tion of the GA is ruled on the one hand by the
respective specifications within the procedure
sp_search (cf. Fig. 7) and by the number of runs
nruns. On the other hand, a time limit is imposed
on the entire search process that is spread evenly
on the runs.
4. Procedure test

The GA, hereafter designated as SPGAL (‘‘L’’
stands for ‘‘layer approach’’), was implemented
in C. In the following, a benchmark test is de-
scribed that includes all methods which are listed
in Table 1. The test was carried out on a Pentium
PC with a core frequency of 2 GHz.

4.1. Sets of 2D-SPP instances

In order to consider all methods in Table 1 dif-
ferent sets of 2D-SPP instances from the literature
are used which are listed in Table 5. Some of the
instance sets are combined with different SPP sub-
types (cf. Section 1) by disregarding the orienta-
tion constraint that is originally required or by
adding the guillotine constraint. For each set of in-
stances it is indicated which of the four subtypes
(RF, RG, OF and OG) are taken into account.

For the instance sets 1, 4 and 7 optimal solu-
tions of the instances are known, since for each in-
stance a larger rectangle has been cut into smaller
pieces without any waste. Additional data that
concern single instances or subsets of instances
are given in the following tables. For further infor-
mation the reader is referred to the specified
literature.

4.2. Numerical results

Each of the subsequent tables includes the re-
sults provided by the method SPGAL for one of
the instance sets described above. Furthermore,
available results of other methods from Table 1
are quoted. The following remarks concern the
execution of the test as well as the set-up of the
tables:

• If subtype RG or OG is required with an
instance set then SPGAL is run without the
post-optimisation heuristic to satisfy the guillo-
tine constraint. Otherwise (subtypes RF, OF)
the post-optimisation heuristic is used.

• For each instance set the results of SPGAL are
indicated in the same way as the results of the
comparison methods in the literature. Thus,
the solution quality is measured in different
ways. ‘‘lU’’ always refers to the used container
length in length units. Optimum lengths and
lower bounds are also given in length units.
The (percentage) ‘‘filling rate’’ of a solution is
computed as (total area of all pieces)/(lU Æ wC).
Other quality measures are explained below if
necessary.

• For the instance sets 1 to 6 ten calculations per
instance were carried out. The data ‘‘best’’ and
‘‘mean’’, given for SPGAL, always refer to the
best and mean result, respectively, of the ten
calculations. For the instance set 7 from Mum-
ford-Valenzuela et al. (2003) each instance was
computed once only.

• A time limit of 1200 seconds per instance was
imposed throughout. The mean calculation
time per instance in Pentium-2 GHz seconds
required by SPGAL is always denoted as ‘‘mean
time’’. Calculation times of other methods are
not quoted since they are often not available.

4.2.1. Results for the instances from Jakobs

The results for the instances from Jakobs (1996)
are shown in Table 6. For each of the methods the
considered subtype is indicated. The method
SPGAL provides the best overall result although
it was tested–just as the GA from Mumford-Val-
enzuela et al. (2003)–for the more difficult subtype
RG.

4.2.2. Results for the instances from Dagli et al.

The results for the instances from Ratanapan
and Dagli (1997, 1998) and Dagli and Poshyan-
onda (1997) can be found in Table 7. Each of the
methods was tested for the subtype RF. For each

Table 5
Sets of 2D-SPP instances

No. Authors, source No. of instances Considered subtypes Further comments

1 Jakobs (1996) 2 RF, RG • Optimum lengths are known for
variant RF

2 Ratanapan and Dagli (1997, 1998) and
Dagli and Poshyanonda (1997)

4 RF • In short ‘‘instances from Dagli et al.’’

3 Kröger (1993, 1995) 12 RF, RG
4 Hopper and Turton (2000) 21 RF, OF, OG • Optimum lengths are known for

variant RF
• Set consists of seven classes C1–C7

each with three instances; the instances
of a class match in terms of container
width, optimum length (RF) and no.
of pieces

5 Berkey and Wang (1987) and
Iori et al. (2002)

300 OF • Instances were originally proposed for
the 2D bin packing problem and
adapted to the 2D-SPP by disregarding
the bin sizes

• Set consists of six classes C1–C6 each
with 50 instances; each class is defined
by a specific interval for the piece
dimensions

• Each class consists of five subclasses
with 10 instances each; the instances
of a subclass match in terms of
container width and no. of pieces

6 Martello and Vigo (1998) and
Iori et al. (2002)

200 OF • See comments on the instances from
Berkey and Wang

• Set consists of four classes C1–C4

7 Mumford-Valenzuela et al. (2003) 480 RG • Optimum lengths are known
• Set consists of two classes ‘‘Nice’’ and

‘‘Path(ological)’’; pieces of an instance
of class Nice are similar in shape and
size; pieces of an instance of class Path
vary more extreme in shape and size

• Both classes consist of eight subclasses
with identical numbers of pieces per
instance

Table 6
Results for the instances from Jakobs (1996), subtypes RF and RG

Instance No. of
pieces

Optimum length;
width wC

Jakobs (1996) Liu and Teng (1999) Mumford-Valenzuela
et al. (2003)

SPGAL

Subtype RF Subtype RF Subtype RG Subtype RG
lU lU lU lU

Best Best Best Best Mean

1 25 15; 40 17 16 16 16 16.0
2 50 15; 40 17 16 16 15 15.0

Mean time 13

830 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837

Table 7
Results for the instances from Dagli et al. (cf. Table 5), subtype RF

Instance No. of
pieces

Continuous
lower bound;
width wC

Ratanapan and
Dagli (1997, 1998)

Dagli and
Poshyanonda (1997)

Poshyanonda and
Dagli (2004)

SPGAL

Filling rate (%) Filling rate (%) Filling rate (%) Filling rate (%)

Best Best Best Best Mean

1 31 45; 60 91.88 – – 95.67 93.9
2 21 40; 60 92.50 – – 97.56 96.6
3 37 112; 30 94.41 – 96.03 98.58 98.5
4 37 161; 20 – 97.15 – 97.62 97.6
Mean time 21

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 831
of the instances the SPGAL performs considerably
better than the comparison methods.

4.2.3. Results for the instances from Kröger

In Table 8 the results for the instances from
Kröger (1993) are listed. Both comparison proce-
dures generate layouts that satisfy the guillotine
constraint. The procedure SPGAL was tested for
each of the subtypes RG and RF.

The parallel GA (PGA) of Schnecke is clearly
dominated by both of the other methods. If the
guillotine constraint is considered (RG), the best
Table 8
Results for the instances from Kröger (1993)a, subtypes RF and RG

Instance No. of
pieces

Continuous
lower bound

Schnecke (1996) K

Subtype RG S
lU l

Bestb Meanb B

1 25 107 111 111.8 1
2 25 103 107 107.6 1
3 25 102 105 106.8 1
4 35 151 156 158.3 1
5 35 122 127 127.5 1
6 35 123 127 128.4 1
7 45 194 202 202.8 1
8 45 163 171 172.8 1
9 45 133 139 139.2 1
10 60 249 256 259.6 2
11 60 275 286 288.0 2
12 60 280 292 294.6 2

Mean 1–12 – 166.8 173.3 174.8 1
Mean time

a For each instance the container width is wC = 100.
b Best/mean value of at least 10 calculations.
c Best/mean value of five calculations.
values of Kröger�s PGA and of the SPGAL coin-
cide, on average, where the comparison procedure
is better for smaller instances, SPGAL for larger
instances. Measured over all calculations, even
without subsequent optimising, SPGAL achieves
an improvement of 0.5 length units per instance
compared to Kröger�s PGA.

If the guillotine constraint is omitted (RF), the
SPGAL achieves new best values for five instances
and equals the best values of Kröger�s PGA for the
remaining instances. The length reduction deter-
mined over all instances and calculations is now
röger (1993) SPGAL

ubtype RG Subtype RG Subtype RF
U lU lU

estc Meanc Best Mean Best Mean

09 109.4 110 110.9 109 109.8
04 105.0 105 105.2 104 105.0
04 104.2 105 105.2 104 104.4
52 153.0 153 153.0 151 152.6
23 123.4 124 124.0 123 123.7
24 124.6 125 125.4 124 124.9
96 197.0 196 196.1 195 195.5
64 165.2 164 164.9 164 164.5
34 135.2 134 135.0 134 134.9
53 253.8 251 251.5 250 251.0
79 280.8 277 277.2 276 276.6
83 284.6 281 281.9 280 281.4

68.7 169.7 168.7 169.2 167.8 168.7
156 166

832 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
1.0 units. SPGAL misses the lower bounds by a
maximum of two units, in the average of the in-
stances by a single unit only, and generates (pro-
ven) optimum solutions for two instances.

4.2.4. Results for the instances from Hopper and

Turton

The results for the instances from Hopper and
Turton (2000) and for the subtype RF are pre-
sented in Table 9. The quality of a solution is mea-
sured by the percentage gap, i.e. the relative
distance to the (known) optimum length lOpt.
The gap is computed as (lU � lOpt)/lOpt. The
indicated gaps for the seven classes are averaged
over the respective three instances.
Table 9
Results for the instances from Hopper and Turton (2000), subtype R

Class No. of
pieces

Optimum
length lOpt;
width wC

Hopper and T

GA + BLF
Gap (%)

Best

C1 16–17 20; 20 4.0
C2 25 15; 40 7.0
C3 28–29 30; 60 5.0
C4 49 60; 60 3.0
C5 72–73 90; 60 4.0
C6 97 120; 80 4.0
C7 196–197 240; 160 5.0

Mean C1–C7 – – 4.6
Mean time

Table 10
Results for the instances from Hopper and Turton (2000), subtypes O

Class Continuous
lower bound clb

Iori et al. (2002)

Subtype OF
Gap (%)

Best

C1 20 1.59
C2 15 2.08
C3 30 2.15
C4 60 4.75
C5 90 3.92
C6 120 4.00
C7 240 –

Mean C1–C6 – 3.08
Mean C1–C7 – –
Mean time
SPGAL clearly dominates the three comparison
procedures from Hopper and Turton (2000). Mea-
sured over all classes, the gaps achieved for the
best solutions are at least 3.4 percentage points be-
low the corresponding values in these comparison
procedures; for the mean values from all calcula-
tions the distance to the best solutions of the com-
parison procedures is still at least 3.0 percentage
points, on average, over all classes.

SPGAL generates optimal solutions for 15 of
the 21 instances; for the remaining six instances
(2, 7, 8, 16, 19 and 21) the optimum is missed in
each case by a single length unit.

In Table 10 the results for the instances from
Hopper and Turton (2000) and for the subtypes
F

urton (2000) SPGAL

NE + BLF SA + BLF
Gap (%) Gap (%) Gap (%)

Best Best Best Mean

5.0 4.0 1.7 1.7
7.0 6.0 0.0 0.9
4.0 5.0 2.2 2.2
4.0 3.0 0.0 1.4
4.0 3.0 0.0 0.0
4.0 3.0 0.3 0.7
5.0 4.0 0.3 0.5

4.7 4.0 0.6 1.0
139

F and OG

SPGAL

Subtype OF Subtype OG
Gap (%) Gap (%)

Best Mean Best Mean

1.59 1.59 3.17 3.17
2.08 3.33 2.08 3.33
3.16 3.16 3.16 3.92
2.70 3.52 2.70 3.78
1.46 2.03 1.46 2.38
1.64 1.72 1.64 1.88
1.23 1.52 1.64 1.69

2.10 2.56 2.37 3.08
1.98 2.41 2.26 2.88

159 143

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 833
OF and OG are provided. Now the method
SPGAL is compared to the best method from Iori
et al. (2002) (cf. Table 1). The percentage gap of a
solution is computed as (lU � clb)/lU where clb

stands for the continuous lower bound. Again,
the gaps of the classes are averaged over the
respective instances.

For the lower classes C1–C3 with smaller in-
stances both methods achieve the same solution
quality or the comparison method is superior.
For the higher classes including larger instances
SPGAL performs considerably better than the
comparison method. A better overall result is also
obtained if the more challenging subtype OG is
required for SPGAL.

4.2.5. Results for the instances from Berkey and

Wang and from Martello and Vigo

Tables 11 and 12 present the results obtained
for the instances from Berkey and Wang (1987)
and for the instances from Martello and Vigo
(1998), respectively. For both instance sets the sub-
type OF is assumed. Again SPGAL is compared to
the best method proposed by Iori et al. (2002). The
gap of a solution now represents the relative
distance to an advanced lower bound, denoted
here as alb,which bases on the relaxation of the
2D-SPP to the so-called One-dimensional Contig-
uous Bin Packing Problem (cf. Iori et al., 2002).
The percentage gap is computed as (lU � alb)/lU
and the gap of each subclass as well as the lower
bound alb is averaged over the respective ten
instances.

The method SPGAL yields the better overall re-
sult for the instance set from Berkey and Wang as
well as for the instance set from Martello and
Vigo. Together these instance sets consist of 10
classes and 50 subclasses. Averaged over the
respective instances SPGAL performs better for
seven classes while the method from Iori et al.
(2002) is superior for three classes. SPGAL
achieves smaller averaged gaps for 34 subclasses
whereas the comparison method performs better
for 12 subclasses. Both methods reach the same
gap for four subclasses. If only the 30 subclasses
are considered the instances of which include
at least 60 items, the respective figures are 24, 3
and 3.
4.2.6. Results for the instances from Mumford-

Valenzuela et al.

In Table 13 the results for the instances from
Mumford-Valenzuela et al. (2003) and for the sub-
type RG are listed. Mumford-Valenzuela et al.
(2003) compared their GA to some simple and fast
heuristics such as the Best Fit Decreasing Height
(BFDH) heuristic described above. The best re-
sults which were achieved by these heuristics are
indicated in column 4 while column 5 includes
the results of the GA developed by Mumford-Val-
enzuela et al. Apart from the subclass Nice-4 the
best performing heuristic is always BFDH. In col-
umn 6 the results of the BFDH* heuristic are pre-
sented, i.e. the quality of the start solution of the
SPGAL method is measured. In column 7 the re-
sults of the complete SPGAL method are shown
while column 8 includes the CPU times consumed
by the complete SPGAL method.

On the one hand the BFDH* heuristic performs
constantly better than each of the (simple) heuris-
tics which were tested in Mumford-Valenzuela
et al. (2003). Furthermore the BFDH* heuristic
never needs more than a few seconds. On the other
hand the complete SPGAL method achieves the
best result for each of the classes and subclasses,
respectively. On average, the improvements are
larger for the class ‘‘Path’’. For both classes, the
improvements decrease with increasing size of the
instances.

The numerical test can be summarised as
follows:

• The test was conducted using very different
instances from the literature with regard to the
problem size, the SPP subtype, the container
width and other characteristics.

• For each instance set and for each SPP subtype
the method SPGAL achieves the best overall
result and the computing times remain reason-
able in either case.

• Some of the competing methods which were
examined, e.g., the parallel GA from Kröger
(1993), are competitive or perform even better
than SPGAL for smaller instances with less
than 50 items. However, for larger instances
with 50 items or above, SPGAL proves to be
the dominant method. Clearly, the superiority

Table 11
Results for the instances from Berkey and Wang (1987), subtype OF

Class/subclass No. of pieces Width wC Lower bound alb Iori et al. (2002) SPGAL

Gap (%) Gap (%) lU

Best Best Best Mean

C11 20 10 60.3 1.33 2.15 61.60 61.96
C12 40 10 121.6 0.30 0.36 122.00 122.30
C13 60 10 187.4 0.86 0.83 189.00 189.15
C14 80 10 262.2 0.23 0.23 262.80 262.90
C15 100 10 304.4 0.37 0.19 305.00 305.25

Mean C1 – – 187.2 0.62 0.75 188.08 188.31

C21 20 30 19.7 0.99 3.91 20.50 20.53
C22 40 30 39.1 2.19 0.00 39.10 39.54
C23 60 30 60.1 2.44 0.00 60.10 60.53
C24 80 30 83.2 1.76 0.11 83.30 83.36
C25 100 30 100.5 1.27 0.20 100.70 100.73

Mean C2 – – 64.5 1.93 0.84 60.74 60.94

C31 20 40 157.4 4.42 5.72 166.70 167.34
C32 40 40 328.8 3.08 2.08 335.40 336.87
C33 60 40 500.0 3.48 2.02 509.80 511.10
C34 80 40 701.7 2.49 1.53 712.50 714.50
C35 100 40 832.7 1.94 1.23 842.60 844.42

Mean C3 – – 504.1 3.08 2.52 513.40 514.85

C41 20 100 61.4 6.33 7.53 66.30 66.72
C42 40 100 123.9 5.79 2.58 127.10 127.95
C43 60 100 193.0 4.53 1.83 196.60 197.65
C44 80 100 267.2 4.19 1.84 272.20 273.58
C45 100 100 322.0 3.14 1.62 327.30 328.56

Mean C4 – – 193.5 4.80 3.08 197.90 198.89

C51 20 100 512.2 4.51 4.42 536.60 537.80
C52 40 100 1053.8 2.95 2.60 1081.40 1082.75
C53 60 100 1614.0 3.32 2.34 1650.80 1654.09
C54 80 100 2268.4 1.73 1.38 2299.50 2302.99
C55 100 100 2617.4 3.07 1.93 2666.90 2672.55

Mean C5 – – 1613.2 3.12 2.53 1646.98 1650.04

C61 20 300 159.9 8.56 10.85 179.10 179.77
C62 40 300 323.5 6.52 4.10 337.00 338.89
C63 60 300 505.1 5.04 2.84 519.80 522.87
C64 80 300 699.7 4.43 2.74 719.40 724.18
C65 100 300 843.8 3.57 2.81 868.10 872.41

Mean C6 – – 506.4 5.62 4.67 524.68 527.62

Mean C1–C6 – – – 3.20 2.40 521.96 523.44
Mean time 96

834 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
for larger instances is of greater importance
since smaller instances may be also calculated
by an exact method (cf., e.g., Martello et al.,
2003).

Table 12
Results for the instances from Martello and Vigo (1998), subtype OF

Class/subclass No. of pieces Width wC Lower bound alb Iori et al. (2002) SPGAL

Gap (%) Gap (%) lU

Best Best Best Mean

C11 20 100 490.4 2.45 2.62 502.70 503.15
C12 40 100 1049.7 1.03 0.99 1059.40 1060.79
C13 60 100 1515.9 0.89 0.90 1529.70 1530.56
C14 80 100 2206.1 0.82 0.76 2222.90 2225.93
C15 100 100 2627.0 0.73 0.81 2648.80 2650.22

Mean C1 – – 1577.8 1.18 1.22 1592.70 1594.13

C21 20 100 434.6 7.66 6.60 465.90 467.45
C22 40 100 922.0 5.85 3.58 956.20 962.00
C23 60 100 1360.9 5.27 2.73 1398.90 1407.01
C24 80 100 1909.3 5.23 2.93 1967.30 1976.13
C25 100 100 2362.8 4.85 2.44 2422.30 2432.41

Mean C2 – – 1397.9 5.77 3.66 1442.12 1449.00

C31 20 100 1106.8 0.00 0.00 1106.80 1107.01
C32 40 100 2189.2 0.07 0.11 2191.20 2191.71
C33 60 100 3410.4 0.00 0.19 3417.50 3417.51
C34 80 100 4578.6 0.20 0.20 4588.10 4588.15
C35 100 100 5430.5 0.08 0.08 5434.90 5434.92

Mean C3 – – 3343.1 0.07 0.12 3347.70 3347.86

C41 20 100 337.8 4.88 5.11 354.20 355.31
C42 40 100 642.8 4.65 3.29 664.70 666.76
C43 60 100 911.1 4.48 2.28 932.60 935.29
C44 80 100 1177.6 4.61 2.43 1207.40 1211.17
C45 100 100 1476.5 4.29 2.09 1507.80 1512.37

Mean C4 – – 909.2 4.58 3.04 933.34 936.18

Mean C1–C4 – – – 2.90 2.01 1828.97 1831.79
Mean time 95

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 835
5. Summary

In this paper a GA for the two-dimensional
strip packing problem with rectangular pieces
was proposed. Each of the four subtypes of the
SPP which result if the orientation constraint and
the guillotine constraint are optionally considered
is covered by the GA.

The GA generates layer-type structured layouts.
It was acquired through adaptation of a genetic
algorithm for the container loading problem.
Tracing the solution of the SPP to the solution
of several CLP instances with reducing container
lengths proved to be a suitable adaptation ap-
proach. Further components of the GA are the
BFDH* heuristic that provides the start solution
for an SPP instance, the diversification of the
search with regard to the learning process of layer
parameters and a heuristic for the post-optimising
of SPP solutions. For large instances the search is
focussed on the improvement of the poorer layers
of the start solution.

The GA was subjected to a comprehensive
numerical test including more than 1000 bench-
mark instances from the literature with up to
5000 items. A representative sample of eleven re-
cently developed 2D-SPP methods which base on
very different design principles (cf. Table 1) was

Table 13
Results for the instances from Mumford-Valenzuela et al. (2003)a, subtype RG

Class/subclass No. of instances No. of pieces Mumford-Valenzuela
et al. (2003)

SPGAL

Heuristicb GAb BFDH*b GAb Mean timec

Nice-1 50 25 118.9 107.3 116.2 105.2 103
Nice-2 50 50 115.5 107.8 113.3 105.0 542
Nice-3 50 100 110.7 108.6 109.1 105.3 365
Nice-4 50 200 108.2 111.3 107.2 105.5 216
Nice-5 10 500 105.4 120.8 104.6 103.7 496
Nice-6 10 1000 104.2 – 103.4 102.7 504
Nice-7 10 2000 103.0 – 102.4 102.0 323
Nice-8 10 5000 101.9 – 101.7 101.5 305

Path-1 50 25 121.1 104.4 113.6 102.8 59
Path-2 50 50 120.3 108.5 114.1 102.6 327
Path-3 50 100 118.0 112.6 112.0 103.1 381
Path-4 50 200 115.2 116.7 110.2 106.7 50
Path-5 10 500 110.6 120.8 107.5 105.4 93
Path-6 10 1000 109.4 – 107.4 104.6 111
Path-7 10 2000 107.2 – 105.1 104.0 195
Path-8 10 5000 105.1 – –d –d –

a Container width wC and optimum length amount to 100 length units for each instance.
b lU averaged over the instances of a subclass.
c Mean CPU time in 2 GHz seconds per instance.
d Not calculated since the respective instances could not be coded by means of the data type int (4 Bytes).

836 A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837
considered for comparison purposes. Compared to
these methods the GA provided the better overall
result in either case. For larger instances with at
least 50 items the GA proved to be the clearly
dominant method.

Finally, the features of the GA which are
mainly responsible for the solution quality are
stressed:

• The search is carried out by means of problem-
specific operators directly in the space of com-
pletely defined layouts with a layer structure.
In accordance with the classification of solution
approaches for the SPP from Hopper and Tur-
ton (2000), the GA is classified in group 3.

• If solutions are generated for a given CLP
instance some random based decisions are made
in order to ensure a sufficient flexibility of the
search. But in view of the placing of pieces, these
random based decisions only provide a frame-
work determining, e.g., the supply of free pieces.

• In fact, pieces are placed and sequences of new
layers are generated by means of sophisticated
and expensive greedy procedures that consider
the mutual relations of the pieces. For example,
pieces are not packed independently of each
other since in general two pieces are loaded
simultaneously into a residual space. Further-
more, the overall quality of a sequence of new
layers is taken into account. In this way the
GA takes a more global view on the problem
data as a whole.

In contrast to the GA proposed here most of
the comparison methods include simpler placing
heuristics which regard the mutual relations of
the pieces only to a smaller extent. Consequently,
generated layouts are based on random to a stron-
ger degree. This applies in particular for some
methods in group 1 (cf. Table 1) in which solutions
are encoded as placing sequences and the pieces
are processed only separately. Therefore, the supe-
riority of the GA especially for larger and com-
plexer instances appears plausible.

Up to now the placing of pieces is tailored to
the guillotine constraint; hence, an extension of

A. Bortfeldt / European Journal of Operational Research 172 (2006) 814–837 837
the GA by subtype-specific placing routines could
lead to a further improvement of the solution qual-
ity. This remains a topic of future research.
Acknowledgment

The author wishes to thank the three anony-
mous referees for their constructive comments.
References

Berkey, J.O., Wang, P.Y., 1987. Two dimensional finite bin
packing algorithms. Journal of the Operational Research
Society 38, 423–429.

Bortfeldt, A., Gehring, H., 1999. Two metaheuristics for strip
packing problems. In: Despotis, D.K., Zopounidis, C.,
(Eds), Proceedings of the Fifth International Conference of
the Decision Sciences Institute, Athens, vol. 2, pp. 1153–
1156.

Bortfeldt, A., Gehring, H., 2001. A hybrid genetic algorithm for
the container loading problem. European Journal of Oper-
ational Research 131, 143–161.

Coffman Jr., E.G., Shor, P.W., 1990. Average-case analysis of
cutting and packing in two dimensions. European Journal
of Operational Research 44, 134–144.

Dagli, C.H., Poshyanonda, P., 1997. New approaches to
nesting rectangular patterns. Journal of Intelligent Manu-
facturing 8, 177–190.

Falkenauer, E., 1998. Genetic Algorithms and Grouping
Problems. Wiley, Chichester.

Fekete, S.P., Schepers, J., 1997. On more-dimensional packing
III: Exact algorithms. Technical Report ZPR97-290, Math-
ematisches Institut, Universität zu Köln, 1997.

Hopper, E., Turton, B.C.H., 2000. An empirical investigation
of meta-heuristic and heuristic algorithms for a 2D packing
problem. European Journal of Operational Research 128,
34–57.

Hopper, E., Turton, B.C.H., 2001. A review of the application
of meta-heuristic algorithms to 2D strip packing problems.
Artificial Intelligence Review 16, 257–300.

Iori, M., Martello, S., Monaci, M., 2002. Metaheuristic
algorithms for the strip packing problem. In: Pardalos, P.,
Korotkich, V. (Eds.), Optimization and Industry: New
Frontiers. Kluwer Academic Publishers.

Jakobs, S., 1996. On genetic algorithms for the packing of
polygons. European Journal of Operational Research 88,
165–181.
Kröger, B., 1993. Parallele genetische Algorithmen zur Lösung
eines zweidimensionalen Bin Packing Problems. Ph.D.
Thesis, Fachbereich Mathematik and Informatik, Univer-
sität Osnabrück.

Kröger, B., 1995. Guillotineable bin packing: A genetic
approach. European Journal of Operational Research 84,
645–661.

Liu, D., Teng, H., 1999. An improved BL-algorithm for genetic
algorithm of the orthogonal packing of rectangles. Euro-
pean Journal of Operational Research 112, 413–420.

Lodi, A., Martello, S., Vigo, D., 1999. Heuristic and metaheu-
ristic approaches for a class of two-dimensional bin packing
problems. INFORMS Journal on Computing 11, 345–
357.

Martello, S., Vigo, D., 1998. Exact solution of the two-
dimensional finite bin packing problem. Management Sci-
ence 44, 388–399.

Martello, S., Pisinger, D., Vigo, D., 1998. The three-dimen-
sional bin packing problem. Operations Research 48, 256–
267.

Martello, S., Monaci, M., Vigo, D., 2003. An exact approach to
the strip-packing problem. Informs Journal on Computing
15, 310–319.

Monaci, M., 2001. Algorithms for Packing and Schedul-
ing Problems. Ph.D. Thesis, Università degli studi di
Bologna.

Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y., 2003. Heu-
ristics for large strip packing problems with guillotine
patterns: An empirical study. In: Metaheuristics: Computer
Decision-Making. Kluwer Academic Publishers B.V., pp.
501–522.

Poshyanonda, P., Dagli, C.H., 2004. Genetic neuro-nester.
Journal of Intelligent Manufacturing 15, 201–218.

Ratanapan, K., Dagli, C.H., 1997. An object-based evolution-
ary algorithm for solving rectangular piece nesting prob-
lems. In: IEEE (Eds.), Proceedings of the IEEE Conference
on Evolutionary Computation 1997, ICEC �97, IEEE,
Piscataway, NJ, USA, pp. 989–994.

Ratanapan, K., Dagli, C.H., 1998. An object-based evolution-
ary algorithm: The nesting solution. In: IEEE (Eds.),
Proceedings of the International Conference on Evolution-
ary Computation 1998, ICEC �98, IEEE, Piscataway, NJ,
USA, pp. 581–586.

Schnecke, V., 1996. Hybrid genetic algorithms for solving
constrained packing and placement problems. Ph.D. Thesis,
Fachbereich Mathematik and Informatik, Universität
Osnabrück.

Sixt, M., 1996. Dreidimensionale Packprobleme. Lösungsver-
fahren basierend auf den Metaheuristiken Simulated
Annealing and Tabu-Suche. Europäischer Verlag der Wis-
senschaften, Frankfurt am Main.

	A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces
	Introduction
	The genetic algorithm for the container loading problem
	Geometrical structure of layouts
	Representing layouts and determining their fitness
	Setting-up the genetic search
	Completing a solution
	Filling a layer
	Learning the layer parameters

	Adaptation of the genetic algorithm to the strip packing problem
	Taking account of the variable container�length
	Constructing the start solution
	Diversifying the search
	Post-optimising the best solution of a run
	Configurating the genetic algorithm for the SPP

	Procedure test
	Sets of 2D-SPP instances
	Numerical results
	Results for the instances from Jakobs
	Results for the instances from Dagli et al.
	Results for the instances from Kr ouml ger
	Results for the instances from Hopper and Turton
	Results for the instances from Berkey and Wang and from Martello and Vigo
	Results for the instances from Mumford-Valenzuela et al.

	Summary
	Acknowledgment
	References

