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Abstract

In this paper a hybrid algorithm to solve Irregular Strip Packing problems is presented. The metaheuristic simulated
annealing is used to guide the search over the solution space while linear programming models are solved to generate
neighbourhoods during the search process. These linear programming models, which are used to locally optimise the
layouts, derive from the application of compaction and separation algorithms.

Computational tests were run using instances that are commonly used as benchmarks in the literature. The best
results published so far have been improved by this new hybrid packing algorithm.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Irregular Strip Packing problem belongs to
the more general class of combinatorial optimisa-
tion problems—the Cutting and Packing prob-
lems. In these problems, one or more big items,
either material or space, must be divided into
smaller pieces. Usually the objective is the waste
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minimisation, i.e. the portions of the big items that
are not used to produce small pieces. In Cutting
and Packing problems, on the one hand, decisions
have to be taken on which pieces to produce and
from which big item, which is a hard combinato-
rial problem. On the other hand, a specific geomet-
ric problem arises: how to cut the small pieces.
These two problems are interlaced and solutions
must be feasible both from the ‘‘quantitative’’
viewpoint (i.e. minimum or maximum number of
small pieces to produce, availability of big items)
and from the geometric viewpoint (i.e. no overlap-
ping between the small pieces, containment of the
small pieces inside the big items).
ed.
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Cutting and Packing problems are mainly char-
acterised by: the number of relevant dimensions,
the regularity or irregularity of the shapes of the
small pieces and big items, the big items assort-
ment and availability, the total number of small
pieces and the number of different types of small
pieces. For a detailed classification of Cutting
and Packing problems see Dyckhoff et al. (1988).
Additional information on Cutting and Packing
is available online on the ESICUP—EURO Spe-
cial Interest Group on Cutting and Packing web
site (http://www.apdio.pt/esicup).

The economic and ecologic impact of the Cut-
ting and Packing problems is obvious in many
industrial production processes and better solving
these problems contributes to a better usage of
natural resources. Examples of industrial Cutting
and Packing problems are:

• 1D Cutting-Stock problems in the Paper
industry;

• 2D Rectangular Cutting in the Furniture,
Home Textile and Glass industries;

• 2D Irregular Packing in the Furniture, Shoe
and Garment industries;

• 3D Container and Truck Loading.

The focus of this work is on the 2D Irregular
Strip Packing problem, also known as nesting
problem, and specially on a variant of the problem
that arises in the garment industry. In its most gen-
eral formulation, the nesting problem is a two
dimensional Cutting and Packing problem where
both the small and the big pieces have irregular
Fig. 1. Nesting lay
(non-rectangular) shapes. Small pieces can be
placed with an arbitrary orientation.

Nesting problems in the garment industry have
several characteristics that are specific to this
industry. These characteristics are inherent to the
production process and to several technological is-
sues. In this type of industry, the plates are big
rolls of fabric with a total length up to several kilo-
metres. This leads to the consideration of a single
rectangle with a fixed width and an infinite length
(a strip). The objective is the minimisation of the
layout length. In the garment industry usually only
two orientations are allowed for the small pieces:
the original and the one obtained by a 180� rota-
tion. This restriction is due to the existence of
drawing patterns and to intrinsic characteristics
of the fabric�s weave. Finally, in the garment
industry the total number of small pieces can rise
above 100, but usually from less than 20 different
types, although with very different sizes. In this
paper, an approach that takes advantage of these
characteristics is proposed. An example of a nest-
ing layout or cutting pattern is represented in
Fig. 1. A more detailed description of nesting
problems and cutting and packing problems can
be found in Dowsland and Dowsland (1995).

In the industrial environment this problem is
usually tackled by experienced workers that ‘‘man-
ually’’ (with the help of CAD systems) build the
layouts. The quality of the layouts produced by
these specialised workers is high and, presently,
automatic solutions can only barely match this
level of quality. A list of (semi-)automatic com-
mercial solutions is available in Hopper (2000).
out example.
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In the literature we can find several algorithms
that follow different approaches to tackle the dif-
ferent issues present in nesting problems. For some
of those issues there are techniques that clearly
out-perform all the others available. That is the
case of the no-fit-polygon concept, used to ensure
the geometric feasibility of a layout, and the case
of the algorithms based on linear programming
compaction models, used to obtain layouts that
are local optima (Li and Milenkovic, 1995; Stoyan
et al., 1996; Bennell and Dowsland, 2001). There
are also a few simple greedy heuristics that are very
effective in achieving a ‘‘good’’ layout rapidly
(Daniels and Milenkovic, 1996; Gomes and Olive-
ira, 2002). In order to avoid local optima, meta-
heuristics have become very popular in this field
(Oliveira and Ferreira, 1993; Bła _zewicz and Walk-
owiak, 1995; Heckmann and Lengauer, 1995;
Bennell and Dowsland, 1999; Gomes and Oliveira,
1999; Hopper, 2000; Gomes and Oliveira, 2001;
Bennell and Dowsland, 2001; Bła _zewicz et al.,
2004). A very promising approach is the use of hy-
brid algorithms that combine metaheuristics and
linear programming compaction models (Bennell
and Dowsland, 2001). This is the approach fol-
lowed in this work, where a simulated annealing
algorithm is used to guide the search through the
solution space, being the neighbourhood structure
based on linear programming compaction models.

This paper is structured as follows. The next sec-
tion has a description of the basic blocks of the pro-
posed nesting algorithm: the no-fit-polygon concept,
the greedy bottom-left placement heuristic and the
compaction/separation algorithms. The following
section is used to present the hybrid algorithm, with
a detailed description of its main components: the
simulated annealing algorithm, the neighbourhood
structure—LOCALOCALCOMPACTOMPACT—and the multi-stage
approach. Finally, computational results are pre-
sented and some conclusions drawn.
1 Although, as a consequence, in some situations the layouts
obtained are not as compact as it would be possible.
2. Blocks to build nesting algorithms

Algorithms based on a high level search algo-
rithm need to perform a fairly wide search over
the solution space to ensure the quality of the re-
sults obtained. This implies that the basic opera-
tions of such algorithms must be efficiently
performed. For the nesting problem, building
and evaluating layouts are the most important
basic operations. Tasks such as avoiding overlap
between two pieces, layout compaction and plac-
ing pieces inside the plate are included in these
operations. The no-fit-polygon is used to efficiently
avoid overlapping among the pieces and to place
pieces inside the plate. The task of generating the
initial layout is performed by a greedy bottom-left
placement heuristic. This heuristic uses a sequence
of pieces and places each one on the plate, with
the ability of filling holes. Linear Programming
models are used to compact layouts (Compaction
Model), improving their quality and removing in
feasibilities (Separation Model). These models
are intentionally kept linear and non-integer 1 so
that they can be easily solved by a standard linear
programming package. These models are the core
of the Compaction and Separation algorithms.

It is also necessary to have an adequate geomet-
ric representation and manipulation of the pieces.
Pieces are represented by convex and non-convex
polygons, with oriented edges, and any curve is
approximated by a set of exterior tangent edges.
The edges are oriented in such a way that the inte-
rior of the polygon is on the right-hand side of the
edge. Holes inside the pieces are not allowed. In a
pre-processing phase, all the pieces are simplified
to eliminate very narrow concavities and, there-
fore, avoid unnecessary computational effort.

2.1. The no-fit-polygon

The no-fit-polygon concept is used to ensure
feasible layouts, i.e. layouts where the pieces do
not overlap and fit inside the plate. This concept
was first introduced by Art (1966) and later on
used by several authors. In other fields of knowl-
edge this concept is also known as Minkowski
sums. Mahadevan (1984) presents a comprehen-
sive description of an algorithm for the no-fit-
polygon generation based on a sliding scheme.
More recently, Bennell et al. (2001) published an
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Fig. 2. No-fit-polygon and inner-fit-rectangle examples: (a) the
no-fit-polygon, NFPi,j and (b) the inner-fit-rectangle, IFRi,j.
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alternative algorithm to compute the no-fit-poly-
gon based on Minkowski sums. In the present
work a geometric library with an implementation
of Mahadevan�s algorithms, previously developed
and used by the authors Oliveira et al. (2000)
and Gomes and Oliveira (2002), was used.

The no-fit-polygon of piece j relative to piece
i (NFPi,j) is the locus of points traced by the refer-
ence point 2 of piece j (Rj), when j slides along the
external contour of piece i. The relative orienta-
tions of pieces i and j are kept fixed during this or-
bital movement. Piece j (the orbital piece) must
never intersect piece i (the stationary piece) and
they must always be in contact (Fig. 2(a)). The
no-fit-polygons are represented by oriented poly-
gons, where the feasible positioning points are on
the left-hand side of the edges (the exterior of the
polygon).

From this definition it follows that:

• if the reference point of piece j (Rj) is placed in
the interior of NFPi,j then piece j overlaps piece
i;

• if the reference point of piece j (Rj) is placed on
the boundary of NFPi,j then piece j touches piece
i;

• if the reference point of piece j (Rj) is placed in
the exterior of NFPi,j then piece j does neither

overlap nor touch piece i.

The problem of finding the relative position of
two polygons is transformed into the simpler prob-
2 The reference point of a piece is the origin of the
coordinate system (0,0), over which the other vertices coordi-
nates, of the same piece, are defined.
lem of finding the relative position of one point
and one polygon.

To achieve a feasible (without overlap) and
tight layout, each piece should have its reference
point on the boundary of at least one no-fit-poly-
gon (relative to another piece) and in the exterior
or in the boundary of all the other no-fit-polygons
(relative to the remaining pieces).

The inner-fit-rectangle is a concept derived from
the no-fit-polygon concept and represents the fea-
sible set of points for the placement of one polygon
inside a rectangle. This concept is used to ensure
that all the pieces are placed inside the plate. The
inner-fit-rectangle of piece j relative to rectangle
i (IFRi,j) is obtained when the piece j (the orbital
piece) slides along the internal contour of the rec-
tangle i (Fig. 2(b)). It is assumed that the plate is
larger than the biggest piece to place, i.e. that the
IFRi,j always exists. The inner-fit-rectangle is also
represented by an oriented polygon, where the fea-
sible positioning points are on the right-hand side
of the edges (the interior of the inner-fit-rectangle).

2.2. Greedy bottom-left placement heuristic

The greedy bottom-left heuristic is a placement
heuristic that converts a sequence of pieces into a
feasible layout. Pieces are placed inside the plate,
one by one, at the most bottom-left feasible place-
ment point. When positioning one piece the heuris-
tic takes into account the previously placed pieces,
both to avoid overlap and to fill holes left empty at
earlier stages. In Gomes and Oliveira (2002), dif-
ferent criteria to generate the sequence of pieces
are discussed. In this work, a new criterion is pro-
posed: random weighted length. This criterion gen-
erates the sequence of pieces by randomly selecting
the next piece to add to the sequence. The proba-
bility of selecting one piece is proportional to that
piece�s length.

To place each piece, the greedy heuristic builds
a set of placement point candidates, which includes
all the following points:

1. the vertices of the no-fit-polygons (NFPi,k)
where k is the next piece to place and i stands
for all the previously placed pieces (i = 1, . . . ,
k � 1);
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Fig. 3. Compaction example.

4 This initial layout can be obtained in several ways, e.g. a
greedy heuristic, randomly placing the pieces on the plate or
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2. the vertices of the inner-fit-rectangle (IFRp,k)
between the next piece to place (k) and the plate
(p);

3. the intersections between any two edges of any
pair of no-fit-polygons described in item 1
(NFPi,k and NFPj,k; i = 1, . . . , k � 1; j = 1, . . . ,
k � 1; i 5 j);

4. the intersections between one edge of any no-fit-
polygon described in item 1 (NFPi,k; i = 1, . . . ,
k � 1) and one edge of the inner-fit-rectangle
described in item 2 (IFRp,k).

From this set, the points which lead to unfeasi-
ble placements, i.e. points that are in the interior of
any no-fit-polygon or on the exterior of the inner-
fit-rectangle, are eliminated, so that a set of admis-
sible placement points is obtained. It is trivial to
obtain the most bottom-left placement point of
this set. This heuristic is described in detail in
Gomes and Oliveira (2002).

Finally, it should also be mentioned that the
no-fit-polygons and the inner-fit-rectangles can
be computed off-line, once they only depend on
the shape of the pieces and do not depend on the
actual places occupied by the pieces in the layout.
When different orientations are allowed it is neces-
sary to calculate no-fit-polygons for each pair of
different orientations and an inner-fit-rectangle
for each orientation.

2.3. Compaction algorithm

One of the most powerful methods available to
obtain high quality layouts is the use of linear/inte-
ger programming compaction models. Compac-
tion models can improve layouts by applying a
set of coordinated continuous motions to the
pieces, achieving layouts that are local optima
(Fig. 3). In a compacted layout the main structure
of the non-compacted layout is preserved, i.e. the
relative positions of pairs of pieces are kept, 3

although the exact position of each piece may be
completely different. During this set of motions
the pieces are not allowed to overlap. Moreover,
3 Preserving relative positions means that if piece i is on the
left-hand side of piece j before the compaction, this relative
position still holds after compaction.
the motion of a piece must be continuous, i.e.
pieces can not jump over other pieces. Rotations
are not tackled. A proof of the Compaction Prob-
lem NP-hardness is available in Li and Milenkovic
(1993).

To use compaction models it is necessary to
have an initial feasible layout. 4 Then the first step
is to analyse the layout and establish positioning
relationships between each pair of pieces. These
relationships are based on the corresponding no-
fit-polygons. As stated in Section 2.1, piece j does
not overlap piece i if the reference point of piece
j is placed over or on the left-hand side of at least
one of the oriented edges of NFPi,j.

5 For a partic-
ular feasible placement of pieces i and j (i.e. with-
out overlap) one or more edges of NFPi,j will
satisfy the previous condition. As, for each pair
of pieces, only one constraint is needed, different
rules may be used to select the edge/constraint that
is added to the model (the so called active con-
straint). These different rules lead to different
implementations of the compaction model. In the
second step the model is solved by a standard lin-
ear programming package and in the final step the
layout is reanalysed in order to detect further
compaction possibilities. This iterative process is
needed because, after a successful compaction,
pieces are positioned in different coordinates and
the use of new sets of active constraints may allow
further improvements. This iterative process stops
when no improvement in the layout can be
manually by an experienced worker. The initial layout can even
be the result of a previous compaction operation.

5 This is only generally true for convex pieces. The gener-
alisation to non-convex pieces is presented in the end of this
section.
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achieved. Usually very few compaction iterations
(less than 10) are necessary to completely compact
a layout.

Different goals can instantiate the generic con-
cept of ‘‘layout quality’’. From the compaction
viewpoint they all have in common being modelled
as an application of an adequate set of forces to
the pieces. Examples of these goals are:

• increasing nesting efficiency by shortening the
layout length, which is achieved by applying a
right-left force to all the pieces;

• creating space, in the middle of the layout, to
place new pieces without increasing the layout
length. This can be obtained by applying forces
with different directions to the pieces. The direc-
tion of the force for a particular piece depends
on the relative position of that piece regarding
the space to be opened (i.e. if the piece is above
the space, we should apply a bottom-up force
to the piece).
Fig. 4. Linear programming mod
In the present work, we use the strategy of
increasing the nesting efficiency by shortening the
layout length.

The general linear programming model for
compacting layouts is presented in Fig. 4. This
general model has been used by other authors
(Li and Milenkovic, 1995; Stoyan et al., 1996;
Bennell and Dowsland, 2001). Its actual imple-
mentations differ from author to author and are
explained at the end of this section. In this model,
the decision variables xi and yi are the coordinates
of the placement point of each piece, z is an aux-
iliary variable that stands for the layout length
and N is the number of pieces in the layout. All
the other constants in the model are described in
Fig. 5. Eqs. (1) and (2) ensure the layout length
minimisation. The set of constraints defined by
Eq. (3) limits the movement of the pieces, in each
one of the compaction iterations, to a maximum
value (DISTANCEi) that depends on the dimen-
sions of each piece, ensuring a smooth compac-
el for compacting layouts.
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Fig. 5. Placing one piece inside the plate.
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tion process. X �
i and Y �

i are constants that are ini-
tialised with the coordinates of the placement
point of piece i. Placing all the pieces inside the
plate is guaranteed by the set of constraints de-
fined by Eq. (4). The set of constraints defined
by Eq. (5) ensures that pieces do not overlap.
When pieces i and j are placed at coordinates
(xi,yi) and (xj,yj), respectively, f(xj � xi,yj � yi) is
defined as

f ðxj � xi; yj � yiÞ

¼
�d2

1; if pieces i and j do not overlap;

0; if pieces i touches j;

d2
2; if pieces i and j overlap:

8><
>: ð7Þ
(a)

(c)

Fig. 6. Associated constraints selection: (a) pieces i and j; (b) no-fit-po
constraints.
In Eq. (7), d1 is the distance between the place-
ment point of piece j and the farthest edge of no-
fit-polygon NFPi,j and d2 is the distance between
the placement point of piece j and the nearest edge
of no-fit-polygon NFPi,j. In Fig. 6 the instantiation
of this model is illustrated. Two pieces i and j (Fig.
6(a)) do not overlap if and only if the placement
point of piece j, Rj, is over or on the left-hand side
of at least one oriented edge of NFPi,j (in the
example of Fig. 6(c) this condition holds for edges
d, e and f). When more than one oriented edge sat-
isfies the above condition, the one that is more dis-
tant from Rj is selected. In the example of Fig. 6(c)
edge e is selected and the constraint associated
with edge e is added to the model (Fig. 6(d)).

Two particular cases need special attention,
since they correspond to saddle points. The first
one is when the placement point, Rj, is over a ver-
tex of the no-fit-polygon NFPi,j (e.g. the intersec-
tion of edges a and b in Fig. 6(c)). In this case
we should add to the model a disjunction of the
constraints associated with the two edges (a,b).
However, due to efficiency purposes (to avoid
mixed-integer formulations) only one edge is
added: the one with the smallest slope. The second
case is similar and occurs when the placement
(b)

(d)

lygon, NFPi,j (c) edges of the no-fit-polygon and (d) associated
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point Rj is over a vertical edge of the no-fit-poly-
gon NFPi,j (e.g. edge b in Fig. 6(c)). Alike the pre-
vious case, we should add to the model a
disjunction of the constraints associated with three
edges (e.g. edges a, b and c in Fig. 6(c)) to the
model. However, only one edge is in fact added
to the model: the constraint associated with the
vertical edge. These approximations can lead to
slightly worse layouts, but they are necessary to
keep the global performance of the nesting algo-
rithm at a good level.

A different situation occurs when the no-fit-pol-
ygon is non-convex and the edge associated with
the selected constraint belongs to a concavity. In
these cases, instead of adding a single constraint,
it is necessary to add a conjunction of constraints:
all the constraints associated with the edges that
bound the concavity. 6 This is not critical, because
the addition of a conjunction of constraints does
not imply the addition of any integer or binary
variable to the model. This situation is illustrated
in Fig. 7. In this example, the constraint associated
with edge c is satisfied. However, the conjunction
of constraints associated with edges d, e and f is
also satisfied (note that those are the edges that
bound the concavity). Since the distance between
edge c and the placement point Rj is less than the
distance between Rj and the nearest concavity bor-
der (edge d), the conjunction of constraints associ-
ated with edges d, e and f is chosen to be added to
the model. This results in an increase on the total
number of constraints, but without any relevant
impact in the overall performance of the nesting
algorithm.

Similar compaction models have also been used
by other authors. Differences between the different
implementations can be found on the objective
function and on the rule used to select the con-
straint that is added to the model, when more than
one fulfils the requirements. However, the major
differences are on the associated separation model
and on how the compaction model is used. Later
on these differences are made clear. Stoyan et al.
(1996) proposes an approach based on the genera-
6 This concept needs to be recursively extended if a
‘‘concavity inside another concavity’’ is present.
tion of different initial layouts. Each one of these
initial layouts must be feasible and they are inde-
pendently compacted, in order to achieve the best
layout. Li and Milenkovic (1995) proposes a mod-
el where different forces are applied to the pieces to
enlarge the gaps between them, by using adequate
coefficients in the objective function. However, the
pieces are restricted to be ‘‘star-shaped’’. More re-
cently, Milenkovic and Daniels (1999) propose an-
other model using a mixed-integer formulation.
Finally, Bennell and Dowsland (2001) propose a
model based on Li and Milenkovic (1995), without
any restriction on the shape of the pieces. The
objective function is the minimisation of the layout
length and redundant constraints are removed.

2.4. Separation algorithm

Based on the compaction model, it is possible to
develop another linear programming model, the
separation model. The idea behind the separation
model is to remove any infeasibility (i.e. overlap-
ping situations) by moving apart the pieces that
overlap. As in the compaction model this is done
by applying a set of coordinated continuous mo-
tions to the pieces (Fig. 8).

In layouts with overlapped pieces, the construc-
tion of the compaction model fails because it is not
possible to establish a valid relationship between
two pieces that overlap (Fig. 9). If piece i overlaps
piece j, the placement point of piece j (Rj) is always
inside the no-fit-polygon NFPi,j, i.e. Rj is on the
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right-hand side of all edges of NFPi,j. To obtain a
complete model of the problem, the constraint
associated with the edge closest to the placement
point Rj should be added to the model. However,
adding this constraint would naturally lead to an
infeasible model. To overcome this difficulty, an
artificial variable ai,j is introduced, turning the
model feasible. In the example of Fig. 9, the con-
straint (Eq. (8)) associated with edge a is added
to the model, with the artificial variable ai,j. The
objective function of the separation model is the
minimisation of the sum of all artificial variables
(Eq. (9)). A feasible layout is obtained when all
the artificial variables have a value of zero. Unlike
other separation models, by using artificial varia-
bles the elimination of overlap does not need to
be achieved in just one step. This increases the
chances of successfully removing overlap. The sep-
aration model has one additional difference when
compared with the compaction model: the set of
constraints used to keep track of the layout length
(Eq. (2) in Fig. 4) is removed.
f ðxj � xi; yj � yiÞ � ai;j 6 0; ð8Þ

min
Xi6¼j

i;j¼1;...;N

ai;j: ð9Þ

Frequently it is not possible to remove the over-
lap in just one step and the separation model may
have to be consecutively applied to obtain a feasi-
ble layout. In our computational experiments in
99% of the situations the overlap was removed in
less than 10 steps. In each step, the separation
model needs to be rewritten accordingly to the
new positions of the pieces.

The main drawbacks of the separation model
are the sparsity of the layouts after the separation
process and the lack of guarantee that overlap is
always removed. The first one is easily overcome
by applying the compaction algorithm to the lay-
out that results from the separation algorithm.
The second drawback can only be overcome if it
is possible to increase both dimensions of the
plate. Unfortunately, this is not the case of nesting
problems where the width of the plate is fixed.
However, since the length of the plate is ‘‘infinite’’,
in practice almost all layouts are effectively
separated.

Based on the respective compaction models, Li
and Milenkovic (1995) and Bennell and Dowsland
(2001) also propose separation models. However,
the separation model proposed in this work pre-
sents a major innovation: the use of a set of artifi-
cial variables ai,j and the associated set of
constraints defined by Eq. (8). With this modifica-
tion, the separation process is done more smoothly
and does not need to be achieved in just one step,
thus increasing the chances of success.
3. Hybrid algorithm

The focus of this work is on the hybridisation of
simulated annealing with linear programming
models in the resolution of nesting problems.
The linear programming models arise in the com-
paction and separation algorithms presented
earlier. These algorithms can be used in a coordi-
nated way, taking advantage of the strong points
of each one, to create an efficient neighbourhood
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structure for nesting problems. The simulated
annealing algorithm is used to guide the search
over the solution space. Bennell and Dowsland
(2001) propose a similar approach where a differ-
ent metaheuristic, a tabu search algorithm, is
hybridised with compaction and separation mod-
els. Besides the use of a different metaheuristic,
additional differences between the two hybrid ap-
proaches can be found on the compaction and sep-
aration linear programming models, as pointed
out in the previous section, and on the neighbour-
hood structure. Two additional differences can be
found on a more strategic level: the type of move-
ment used to move between neighbour solutions
and the acceptance, or not, of unfeasible solutions
along the search. In Bennell and Dowsland (2001),
moving from one solution to another is done by
moving one piece in the layout (insert movement)
and infeasible layouts (i.e. layouts with overlap)
are allowed. In this work, moving to another solu-
tion is done by exchanging the positions of two
pieces in the layout (swap movement) and unfeasi-
ble layouts are not allowed along the search. 7

In the next subsections, the main components of
the hybrid algorithm are presented: the simulated
annealing algorithm and the neighbourhood struc-
ture. The last subsection is dedicated to present a
multi-stage approach that tries to explore the vari-
ety, in terms of size, of the pieces that usually
arises in the garment industry.

3.1. Simulated annealing

The origins of simulated annealing can be
found in Metropolis et al. (1953), where an algo-
rithm to simulate the cooling of material in a heat
bath, a process known as annealing, is presented.
Later on, Kirkpatrick et al. (1983) proposed the
use of simulated annealing as an approach to
tackle combinatorial optimisation problems. Since
then, there has been an enormous quantity of work
where simulated annealing has been applied to
various combinatorial optimisation problems.
7 Layouts with overlap are allowed within a neighbourhood
movement, but the new solution is only accepted if the overlap
is completely removed (see Section 3.2 for further details).
Pure local search approaches frequently end up
entrapped in local optimal solutions, since they
can only move to better solutions in the neighbour-
hood. Simulated annealing can be seen as an evo-
lution of those approaches, by allowing some
controlled uphill movements, in order to achieve
global optimality. Accepting a movement to a worse
solution depends on a control parameter (the tem-
perature) and on the magnitude of the variation of
the objective function, i.e. how worse the solution is.

Many real-life problems have been successfully
tackled by approaches based on simulated anneal-
ing. The main reasons for this success are: the
high quality of the solutions, the easy inclusion of
real-life constraints and the robustness of these ap-
proaches. The main drawback is the large compu-
tational effort needed.

In this work,we use the simulated annealing algo-
rithm described in Pirlot (1996). To apply a simu-
lated annealing algorithm to a particular problem,
several decisions must be taken. These decisions
can be divided in generic decisions and specific deci-
sions. The generic decisions include the initial tem-
perature (t0), the cooling scheme, the stopping
condition and the plateau length. The specific deci-
sions are the evaluation function, the neighbour-
hood structure and the initial solution.

After some preliminary tests, the following gen-
eric decisions were taken: an initial temperature t0
calculated so that the probability of accepting
worse solutions in the first plateau is greater than
50%; a geometric cooling scheme with a factor of
0.9; two plateaus without improvement as a stop-
ping condition; the plateau length was set equal
to the number of combinations of pairs of pieces,

given by
N
2

� �
, where N stands for the total num-

ber of pieces.

Problem specific decisions were taken based on
the blocks presented earlier: the initial solution is
obtained by the greedy bottom-left placement heu-
ristic (Section 2.2), being the next piece to place se-
lected according to the random weighted length

criterion. The neighbourhood structure used in
this work is based on the compaction and separa-
tion algorithms, presented in the previous section,
and is discussed in the following subsection. There
is no need to implement any additional evaluation
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function to measure the layout length, since it is al-
ready calculated both by the greedy bottom-left
placement heuristic and by the compaction
algorithm.

3.2. Neighbourhood structure—LOCALOCALCOMPACTOMPACT

The use of an adequate neighbourhood struc-
ture is a crucial factor to obtain a successful meta-
heuristic algorithm. Special care was put on the
development of an efficient neighbourhood struc-
ture—LOCALOCALCOMPACTOMPACT. This new neighbourhood
structure uses the compaction and separation
models presented earlier.

The main advantage of the compaction model is
the ability to efficiently obtain local optimal lay-
outs. However, it lacks the ability to perform any
kind of global optimisation, once the pieces are
not allowed to jump over other pieces and tempo-
rary infeasible layouts are not allowed. On the
other hand, the main advantage of the separation
model is the ability of removing overlap and thus
obtaining feasible, although sparse, layouts. With
these ideas in mind, it is necessary to induce
changes in the relative positions of pairs of pieces
(i.e. having one or more pieces jumping over other
pieces), so that the search produces layouts with
different relationships between pairs of pieces.

Within LOCALOCALCOMPACTOMPACT, the small perturba-
tion introduced in the current layout to generate
a new neighbour, could be obtained by changing
(a)

(c)

Fig. 10. Neighbourhood structure example: (a) select two pieces rando
separation and (d) layer compaction.
the placing point of one piece or, alternatively,
by exchanging the position of two pieces in the lay-
out (Fig. 10(a)–(b)). In both cases overlap is usu-
ally created, however, it can be removed by
applying the separation model (Fig. 10(c)). After-
wards, the layout is compacted by the compaction
model to obtain a local optimum (Fig. 10(d)). The
acceptance of this new layout is ruled by a higher
level search algorithm.

In preliminary tests, the supremacy of the pieces
exchanging perturbation was clear. This happened
mainly because the total number of times the sep-
aration model failed (i.e. a feasible layout was not
achieved) was smaller. The behaviour may be ex-
plained as follows: when exchanging two pieces,
there is always some free space on the plate (the
space occupied by the other piece that is being ex-
changed), when changing the position of just one
piece (an insertion move) the existence of free
space at the new position is not guaranteed. An-
other issue is the decision of what to do to achieve
a feasible layout when the separation model fails.
Two options arise: try again exchanging two differ-
ent pieces, or accept the layout and penalise it
with an ‘‘infinite’’ length. The first option was
chosen.

A neighbourhood structure for nesting prob-
lems necessarily needs to be able to rotate pieces
in layouts. This is quite easy to achieve with the
LOCALOCALCOMPACTOMPACT neighbourhood: when a particu-
lar piece is part of a neighbourhood movement, it
(b)

(d)

mly; (b) exchange the positions of the selected pieces; (c) layout
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is possible to select a different orientation for that
piece, which means that the piece may end up ro-
tated. The orientation selection, for a pair of pieces
that take part on a neighbourhood movement, is
done by trying all combinations of pairs of admis-
sible orientations. The pair of orientations that
leads to a better layout is selected. For instance,
if for a certain instance two orientations are al-
lowed for the pieces (0� and 180�), then, each time
a pair of pieces (P1 and P2) is selected to be
swapped, 4 alternatives are evaluated: (P1, 0�;
P2, 0�), (P1, 0�; P2, 180�), (P1, 180�; P2, 0�), and
(P1, 180�; P2, 180�).

The LOCALOCALCOMPACTOMPACT neighbourhood structure
proved to be a very powerful tool when used on
the development of metaheuristics for nesting
problems. The use of a linear programming com-
paction model ensures compacted layouts (i.e. lo-
cally optimal for a particular set of relative
positions between the pieces). The type of move-
ments allowed in the neighbourhood structure
(exchanging positions between two pieces in the
layout), ensures that different sets of relative posi-
tions between the pieces are investigated.

3.3. Multi-stage approach

As mentioned earlier, one of the specificities of
nesting problems in the garment industry is the
existence of a very big diversity on the piece sizes.
In these cases, the layout length is totally or almost
totally determined by the placement of the bigger
pieces, while the smaller ones can be easily packed
in gaps among them. A multi-stage approach is
proposed to take advantage of this characteristic,
which aims to reduce the computational effort
without compromising the layout quality.

The multi-stage approach divides the available
pieces in two groups, accordingly to their relative
sizes: one group with the bigger pieces and other
group with the smaller ones. A parameter, which
is a percentage of the size of the biggest piece, con-
trols this division process. The size of a piece can
be measured in many different ways (area, length,
width, perimeter, . . .). However, since the idea is
to fill small gaps in the middle of a layout, the
obvious choice is the area. This process of dividing
pieces in two groups can be recursively used to cre-
ate more groups. However, the idea is not to divide
the pieces in more than 3 or 4 groups. At each
stage, a different group of pieces is packed, starting
by the groups with the bigger pieces. For the sec-
ond and subsequent stages, the algorithm chosen
to pack the pieces has to take into account the
pieces that were packed in the previous stages.

As the results of the first stage are crucial for the
overall quality of the final layout, in the implemen-
tation proposed in this paper the powerful hybrid
algorithm, based on simulated annealing, is used in
this stage. However, for the following stages, a fas-
ter hybrid algorithm, based on a pure local search
mechanism, is used: the 2-exchange heuristic
proposed in Gomes and Oliveira (2002). The 2-
exchange heuristic searches over sequences of
pieces and relies on the previously described gree-
dy bottom-left placement heuristic to generate the
actual layouts. Pure local search is used to control
the search process. Given a sequence of pieces,
each piece is selected and exchanged with all the
other pieces of the sequence. In the implementa-
tion proposed in this paper, hybridisation is also
introduced in this algorithm by generating and
solving linear programming compaction models
after each run of the greedy bottom-left placement
heuristic.

In more detail, each stage starts by using the
greedy bottom-left placement heuristic to pack
the pieces belonging to that stage. The pieces
packed in the previous stages are considered as
placed in the coordinates previously determined
and gaps among them may be filled by the pieces
of the current stage. Then, the faster hybrid algo-
rithm tries to improve the layout, by iteratively
exchanging pairs of pieces in the input sequence.
In each iteration, the pieces of the current stage
are removed from the current layout and the new
iteration�s sequence is packed again by the greedy
bottom-left placement heuristic. At this point,
the compaction algorithm is applied to the full lay-
out, including the pieces placed in previous stages.
In fact, the positions of these pieces are not consid-
ered fixed and can suffer small adjustments, during
this compaction phase, that can lead to an overall
improvement of the layout. The new layout is ac-
cepted if the layout length is less than the previous
one. All exchanges between pairs of pieces, in the
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sequence of pieces to place, are tried and the proc-
ess is repeated until a full neighbourhood is
searched without any improvement. The search
also stops when a layout length no greater than
the length obtained in the previous stage is
achieved. Better solutions might be obtained if
the search was not stopped by this reason.
However, as achieving better solutions is highly
improbable and in order to keep running times
as low as possible, the search is effectively stopped
when a layout length not greater than the previous
stage layout length is achieved. A final remark,
about the greedy bottom-left placement heuristic
used in the faster hybrid algorithm, should be
made. After preliminary tests the original area cri-
terion (Gomes and Oliveira, 2002) showed to be
more adequate to fill the gaps in the middle of
the layout. This is the criterion used in all stages
after the first one.
4. Computational results

Preliminary computational experiments were
carried out in early stages of this work. These
experiments allowed to take several decisions
about the implementation and the parameters tun-
ing of the hybrid approach, namely the ones
regarding the simulated annealing algorithm, the
bottom-left greedy placement heuristic and the
compaction and separation algorithms, which
have already been discussed in previous sections.
What remains to be discussed are DISTANCEi

parameters that used in the compaction model
(Fig. 4). This set of parameters restricts the move-
ment allowed for the pieces in each iteration of the
compaction and separation algorithms. Observa-
tions made during these preliminary experiments
have shown their dependence on the size of the
pieces, but also the algorithm robustness for small
variations of the values of these parameters. Given
this, each parameter DISTANCEi with i = 1, . . . ,N
(N stands for the number of pieces in the layout)
was set equal to half the size of the biggest dimen-
sion of the enclosing rectangle of piece i. Addition-
ally, and together with the set of constraints
defined by Eq. (3), these parameters have also a
positive secondary effect as they allow the removal
of several constraints of the linear programming
model that will never be active as pieces will never
move far enough. These redundant constraints are
of two types:

• containment constraints (Eq. (4))—constraints
where the smallest distance between piece i

and the plate border is bigger than
DISTANCEi;

• overlap constraints (Eq. (5))—constraints where
the smallest distance between piece i and piece j
is bigger than DISTANCEi + DISTANCEj.

Special care was put on the design of the com-
putational tests to evaluate the performance of
the hybrid algorithm. The hybrid algorithm bench-
mark was done using problem instances taken
from the literature and against the best results
published for these instances. To evaluate the rela-
tive impact of the neighbourhood structure and of
the simulated annealing search strategy in the
overall quality of the results, a greedy local search
hybrid algorithm was also tested. This algorithm
was directly obtained from the simulated anneal-
ing algorithm by setting the initial temperature to
zero: during the search only equal of better solu-
tions are accepted. As both algorithms use the
same neighbourhood structure, the comparison
of their computational results will allow to reach
conclusions about the influence of the simulated
annealing search strategy on the quality of the fi-
nal solutions.

4.1. Problem instances

Nesting problem instances available in the liter-
ature were used to evaluate the performance of the
hybrid algorithm. These instances have already
been used as benchmarks by other researchers. A
total of 15 nesting problem instances were col-
lected from Hopper (2000) and Oliveira et al.
(2000). The actual data files can be downloaded
from the ESICUP web site—http://www.apdio.pt/

esicup. The main characteristics of these instances
are summarised in Table 1.

Problem instances marked with * in Table 1
were scanned from sample layouts and processed
with digitising software. This process implies a

http://www.apdio.pt/esicup
http://www.apdio.pt/esicup


Table 1
Nesting problem instances characteristics

Problem instance Number of
different pieces

Total number
of pieces

Vertices by
piece (average)

Admissible
orientations (degrees)

Plate width Problem type

FU* 12 12 3.58 0, 90, 180 38 Artificial, convex
JAKOBS1* 25 25 5.60 0, 90, 180 40 Artificial
JAKOBS2*,a 25 25 5.36 0, 90, 180 70 Artificial
SHAPES0� 4 43 8.75 0 40 Artificial
SHAPES1� 4 43 8.75 0, 180 40 Artificial
SHAPES2�b 7 28 6.29 0, 180 15 Artificial
DIGHE1*,c 16 16 3.87 0 100 Jigsaw puzzle
DIGHE2*,c 10 10 4.70 0 100 Jigsaw puzzle
ALBANO* 8 24 7.25 0, 180 4900 Garment
DAGLI* 10 30 6.30 0, 180 60 Garment
MAO* 9 20 9.22 0, 90, 180 2550 Garment
MARQUES*,d 8 24 7.37 0, 90, 180 104 Garment
SHIRTS� 8 99 6.63 0, 180 40 Garment
SWIM� 10 48 21.90 0, 180 5752 Garment
TROUSERS� 17 64 5.06 0, 180 79 Garment

a Scaling factor of 2 when compared with the original publication.
b Problem instance also known as BLAZ.
c Problem instance similar to the original publication.
d Scaling factor of 5 when compared with the original publication.
� Problem instance coordinates stated in Oliveira et al. (2000).
* Problem instance scanned from sample layout (Hopper, 2000).
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degree of inaccuracy, which, however, does not
compromise the evaluation of the algorithms per-
formance. See Hopper (2000) for details on the
scanning process and for references to the papers
where the layouts have been published.

The nesting instances of Table 1 can be divided
in three different types: artificial, jigsaw puzzle and
garment. Instances belonging to the first type have
been artificially created. Jigsaw puzzles are in-
stances where all the pieces fit perfectly and so it
is possible to achieve a 100% efficiency. Instances
of this type are interesting because the optimum
is known in advance. Finally, garment type in-
stances are real-life instances taken from the gar-
ment industry. In all 15 instances the pieces are
represented by polygons. In some cases the polyg-
onal shape is an approximation of the real shape.
8 The efficiency is measured as the quotient between the area
of the pieces packed and the used rectangular area of the plate.
4.2. Results

The computational tests were performed on a
personal computer with a Pentium IV processor
running at 2.4GHz and with 512Mb of RAM.
The program was coded in C and ILOG CPLEX
8.0 was used to solve the linear programming
models.

The computational tests consisted on 20 runs for
each instance, both for the simulated annealing hy-
brid algorithm (SAHA) and the greedy local search
hybrid algorithm (GLSHA). The results obtained
are summarised in Table 2. In this table, the first
column is the instance name. The next eight col-
umns refer to the results of the two algorithms.
Each group of four columns contains the results
obtained for one of the algorithms, respectively:
the best layout length, the best layout efficiency, 8

the average layout length of the 20 runs and the
average running time of the 20 runs. Finally, the
last two columns present the best layout length
published in the literature and the algorithm that
achieved that result. In Table 3 a comparison be-
tween the two hybrid algorithms and between these
and the best result published in the literature (BRP)
is presented. The first set of three columns refers
to the comparison of the best solutions, while the



Table 2
Hybrid algorithms results

Problem
instance

GLSHA SAHA Best result published
in the literatureLayout Average

time (seconds)
Layout Average

time
(seconds)

Best Average
length

Best Average
lengthLength Efficiency (%) Length Efficiency (%) Length Algorithm

FU 32.54 87.57 33.17 47 31.33 90.96 32.70 296 34.00 HYBRIDYBRID
a

JAKOBS1 12.00 81.67 13.30 37 12.42 75.89 12.93 332 13.00 CAGAAGA
b

JAKOBS2 26.00 74.23 26.37 55 24.97 77.28 25.86 454 28.20 HOOPPEROOPPERSAc

SHAPES0 62.00 64.35 64.09 621 60.00 66.50 63.15 3914 63.00 JOSTLINGOSTLING
d

SHAPES1 57.00 70.00 58.71 1944 56.00 71.25 58.17 10314 59.00 2-EXCHANGEXCHANGE
e

SHAPES2 26.40 81.82 26.92 348 25.84 83.60 26.53 2257 27.30 2-EXCHANGEXCHANGE

DIGHE1 120.96 82.67 130.87 18 100.00 100.00 122.00 83 138.13 NESTESTLIBIB
f

DIGHE2 100.00 100.00 130.45 3 100.00 100.00 119.53 22 134.05 HOPPEROPPERGAg

ALBANO 10074.08 86.41 10476.80 209 9957.41 87.43 10280.05 2257 10122.63 HOPPEROPPERSA
DAGLI 59.32 85.49 61.11 797 58.20 87.15 59.41 5110 65.60 NESTESTLIBIB

MAO 1819.40 81.01 1851.68 667 1785.73 82.54 1842.70 8245 2058.60 HOPPEROPPERGA
MARQUES 80.49 85.94 82.44 791 78.48 88.14 79.63 7507 83.60 HOPPEROPPERNEh

SHIRTS* 62.21 86.80 63.09 5290 62.22 86.79 63.03 10391 63.13 2-EXCHANGEXCHANGE

SWIM� 6040.25 73.24 6156.68 2724 5948.37 74.37 6121.39 6937 6568.00 NESTESTLIBIB

TROUSERS� 242.89 89.67 246.34 5080 242.11 89.96 244.68 8588 245.75 2-EXCHANGEXCHANGE

a Hybrid approach in Fujita et al. (1993).
b CAGA algorithm in Hifi and M�Hallah (2003).
c Simulated annealing algorithm in Hopper (2000).
d Jostling algorithm in Dowsland et al. (1998).
e 2-Exchange algorithm in Gomes and Oliveira (2002).
f Commercial nesting software NESTESTLIBIB cited in Hopper (2000).
g Genetic algorithm in Hopper (2000).
h Naive evolution algorithm in Hopper (2000).
� Solved with the multi-stage approach with two stages.
* Solved with the multi-stage approach with three stages.
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Table 3
Hybrid algorithms comparisons

Problem instance Best solution improvement (%) Average solution improvement (%) Average time
ð SAHA
GLSHAÞGLSHA

vs. BRP
SAHA
vs. BRP

SAHA
vs. GLSHA

GLSHA
vs. BRP

SAHA
vs. BRP

SAHA
vs. GLSHA

FU 4.28 7.84 3.72 2.43 3.82 1.43 6.24
JAKOBS1 7.69 4.44 �3.53 �2.31 0.52 2.76 8.88
JAKOBS2 7.80 11.44 3.95 6.49 8.31 1.95 8.29
SHAPES0 1.59 2.54 0.97 �1.73 �0.23 1.47 6.30
SHAPES1 3.39 5.08 1.75 0.49 1.41 0.93 5.31
SHAPES2 3.30 4.39 1.13 1.39 2.81 1.43 6.14
DIGHE1 12.43 27.60 17.33 5.25 11.68 6.78 5.57
DIGHE2 25.40 25.40 0.00 2.69 10.83 8.37 6.33
ALBANO 0.48 1.63 1.16 �3.50 �1.56 1.88 10.82
DAGLI 9.57 11.29 1.90 6.85 9.44 2.78 6.41
MAO 11.62 13.23 1.82 10.05 11.29 1.37 10.61
MARQUES 3.72 6.12 2.49 1.39 4.75 3.41 9.50
SHIRTS* 1.46 1.44 �0.01 0.06 0.15 0.09 6.40
SWIM* 8.03 8.70 0.72 6.26 6.80 0.57 5.05
TROUSERS* 1.16 1.48 0.32 �0.24 0.43 0.67 6.68

Average 6.80 8.84 2.25 2.37 4.70 2.39 7.13

* Solved with the multi-stage approach.

Table 4
Number of pieces in each stage

Problem instance Stage

First Second Third

SHIRTS 24 45 30
SWIM 24 24 –
TROUSERS 28 36 –
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following set of three columns concerns the com-
parison between the averages of the 20 runs. The
last column shows the quotient of the computa-
tional times of SAHA and GLSHA algorithms.

The overall quality of the layouts produced by
SAHA and GLSHA is outstanding. The best re-
sults published in the literature were improved by
both hybrid algorithms for all the instances used
in the computational tests. The average improve-
ment of the best result published, when consider-
ing all problem instances, is 8.84% for SAHA
and 6.80% for GLSHA. Furthermore, the average
of the 20 runs of SAHA still improves the best re-
sult published in 13, out of 15, instances and the
average of the 20 runs of GLSHA improves the
best result published for nine instances. In what
concerns the comparison between SAHA and
GLSHA, SAHA achieved the best layout in 13 in-
stances and only in two instances it was beaten by
GLSHA (JAKOBS1 and SHIRTS). This result
was not expected, given the more complex search
strategy used in SAHA, but as SAHA has an
important random component, this can always
happen. However, when average values of the 20
runs are considered, SAHA outperforms GLSHA
for all problem instances.
As expected, the computational times of both
algorithms are very different and, within each algo-
rithm, the computational times are greatly depend-
ent on the characteristics of the problem instances.
The computational times are directly related with
the main characteristics of the problem instances
(Table 1). This relation is stronger when the total
number of pieces, admissible orientations and
number of vertices by piece are considered, and
is weaker in what concerns the number of different
pieces. The computational times of SAHA (based
on simulated annealing) and GLSHA (based on
greedy local search) are very different: SAHA
takes 5–11 times more computational time than
GLSHA. The average quotient between GLSHA
average computational time and SAHA average
computational time is 7.13. To keep this compari-



Fig. 11. Best layouts: (a) JAKOBS1; (b) JAKOBS2; (c) MAO; (d) MARQUES; (e) FU; (f) SHAPES2; (g) DIGHE1; (h) DIGHE2;
(i) SHAPES0; (j) SHAPES1; (k) DAGLI; (l) ALBANO; (m) TROUSERS; (n) SHIRTS; (o) SWIM.
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son fair, in the instances marked with * in Table 3,
where the multi-stage approach has been used,
only the computational times of the first stage were
considered.

Instances SHIRTS, SWIM and TROUSERS
were solved using the multi-stage approach, be-
cause they are very large and include pieces of very
different sizes. By doing so, the running times were
kept within reasonable limits. The number of
pieces selected to be packed in each stage, for each
problem instance, is presented in Table 4. The
pieces were grouped according to their area. For
these instances the results presented in Table 2 in-
clude all the stages, i.e. computational times pre-
sented are the sum of computational times of all
stages and layout lengths refer to the layout length
obtained after the last stage.

The overall conclusion that can be taken from
these results is the impressive adequacy of the
neighbourhood structure LOCALOCALCOMPACTOMPACT for
the resolution of nesting problems. With a simple
greedy local search procedure, very good layouts
can be obtained in a fair amount of time, while
outstanding results are achieved with a more com-
plex search strategy, as simulated annealing, in a
larger amount of time. Finally, the best layout ob-
tained in the computational tests for each problem
instance is presented in Fig. 11.
5. Conclusions

In this work a new hybrid nesting algorithm is
proposed. The use of a neighbourhood structure
based on the exchange of pieces on the layout, fol-
lowed by compaction and separation algorithms,
which imply the resolution of several linear pro-
gramming models in each step, proved to be an ex-
tremely effective approach when used together
with a simulated annealing algorithm to guide
the search over the solution space. The best results
previously published in the literature were im-
proved for all problem instances used in the com-
putational tests. The simulated annealing hybrid
algorithm computational times are relatively high,
specially with the large instances taken from the
garment industry. However, a greedy local search
strategy, with the same neighbourhood structure,
can be used to produce very good layouts in a
more reasonable amount of time.
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